Abstract:
In some embodiments, an apparatus includes a compute device to communicate with a network control entity at each access switch from a set of access switches that define a portion of a data plane having a switch fabric coupling as hierarchical peers each access switch from the set of access switches. The compute device is operable to define a portion of a control plane that includes the network control entities from the set of access switches such that the compute device is hierarchically removed from the network control entities from the set of access switches. The compute device is operable to receive forwarding-state information from a first access switch from the set of access switches. The compute device to send the forwarding-state information to a second access switch from the set of access switches.
Abstract:
In one embodiment, a method includes detecting a virtual resource hosted by a host device, selecting a configuration template associated with the virtual resource, and providing a provisioning instruction to a virtual switch module hosted by the host device based on the configuration template. The host device is operatively coupled to a network device. The detecting is at the network device; the selecting is at the network device; and the providing is at the network device. The virtual switch module is in communication with the virtual resource. The configuration template associated with the virtual resource is selected from a library of configuration templates accessible to the network device.
Abstract:
In some embodiments, a network management module is operatively coupled to a set of edge devices that are coupled to a set of peripheral processing devices. The network management module can receive a signal associated with a broadcast protocol from an edge device from the set of edge devices in response to that edge device being operatively coupled to a switch fabric. The network management module can provision that edge device in response to receiving the signal. The network management module can define multiple network control entities at the set of edge devices such that each network control entity from the multiple network control entities can provide forwarding-state information associated with at least one peripheral processing device from the set of peripheral processing devices to at least one remaining network control entity from the multiple network control entities using a selective protocol.
Abstract:
In one embodiment, edge devices can be configured to be coupled to a multi-stage switch fabric and peripheral processing devices. The edge devices and the multi-stage switch fabric can collectively define a single logical entity. A first edge device from the edge devices can be configured to be coupled to a first peripheral processing device from the peripheral processing devices. The second edge device from the edge devices can be configured to be coupled to a second peripheral processing device from the peripheral processing devices. The first edge device can be configured such that virtual resources including a first virtual resource can be defined at the first peripheral processing device. A network management module coupled to the edge devices and configured to provision the virtual resources such that the first virtual resource can be migrated from the first peripheral processing device to the second peripheral processing device.
Abstract:
In some embodiments, a network management module is operatively coupled to a set of edge devices that are coupled to a set of peripheral processing devices. The network management module can receive a signal associated with a broadcast protocol from an edge device from the set of edge devices in response to that edge device being operatively coupled to a switch fabric. The network management module can provision that edge device in response to receiving the signal. The network management module can define multiple network control entities at the set of edge devices such that each network control entity from the multiple network control entities can provide forwarding-state information associated with at least one peripheral processing device from the set of peripheral processing devices to at least one remaining network control entity from the multiple network control entities using a selective protocol.
Abstract:
In some embodiments, an apparatus includes a scheduler disposed at a control device of a switch fabric system. The scheduler is configured to receive a control plane request associated with the switch fabric system having a data plane and a control plane separate from the data plane. The scheduler is configured to designate a control plane entity based on the control plane request and state information of each control plane entity from a set of control plane entities associated with the control plane and instantiated as a virtual machine. The scheduler is configured to send a signal to a compute device of the switch fabric system in response to the control plane request such that the control plane entity is instantiated as a virtual machine at the compute device.
Abstract:
In some embodiments, a system includes a first network control entity, a second network control entity and a third network control entity. The first network control entity and the second network control entity are associated with a first network segment. The third network control entity is associated with a second network segment. The first network control entity is operable to send to the second network control entity an identifier of the first network segment and forwarding-state information associated with a data port at a first network element. The second network control entity is operable to receive the identifier of the first network segment and the forwarding-state information. The second network control entity is operable to send the forwarding-state information to a second network element. The first network control entity does not send the identifier of the first network segment and the forwarding-state information to the third network control entity.
Abstract:
In some embodiments, an apparatus includes a first network control entity configured to be implemented at a first edge device. The first network control entity is configured to receive a control packet from a peripheral processing device via a tunnel that is between the peripheral processing device and the first network control entity and that includes at least a portion within a second edge device. The first network control entity is configured to determine routing information associated with the peripheral processing device based on the control packet. The first network control entity is configured to send the routing information to a second network control entity such that the second network control entity routes a data unit addressed to the peripheral processing device to the second edge device without sending the data unit to the first edge device.
Abstract:
In one embodiment, an apparatus includes a switch core that defines a single logical entity and has a multi-stage switch fabric physically distributed across a plurality of chassis. The multi-stage switch fabric has a plurality of ingress ports and a plurality of egress ports. The switch core is configured to be coupled to a plurality of peripheral processing devices via the plurality of ingress ports and the plurality of egress ports. The switch core is also configured to provide non-blocking connectivity at line rate between a first peripheral processing device disposed with a first chassis and a second peripheral processing device disposed within a second chassis.
Abstract:
In one embodiment, an apparatus includes a switch core that has a multi-stage switch fabric. The multi-stage switch fabric has a set of ingress ports and a set of egress ports. The switch core can be configured to be coupled to a set of edge devices via the set of ingress ports and the set of egress ports. The switch core can be configured to receive a packet from an ingress port from the set of ingress ports. The switch core can be configured to send a set of cells associated with the packet from the ingress port to an egress port from the set of egress ports without a store-and-forward delay associated with a zero-load latency for the switch core.