Abstract:
The present invention relates particularly to photovoltaic roofing systems in which photovoltaic elements are integrated on a roof deck with conventional roofing materials. In one aspect, a photovoltaic roofing system includes a two-part tee element disposed on a roof deck, the two-part tee element comprising a base piece including a central portion; two opposed horizontally-extending first and second flanges extending from the central portion, and a top piece attachment feature formed in the central portion, and a top piece including a base piece attachment feature mated with the top piece attachment feature of the base piece; and a vertically extending portion extending from the base piece attachment feature. A first photovoltaic element can be disposed on the roof adjacent the base piece with its edge disposed on the horizontally-extending first flange of the base piece of the two-part tee element.
Abstract:
The present invention relates generally to roofing products. The present invention relates more particularly to roofing products for use with photovoltaic elements, and to photovoltaic systems that include one or more photovoltaic elements is joined to a roofing substrate. In one embodiment, a roofing product includes a flexible roofing substrate having a top surface, the top surface having one or more receptor zones thereon, each receptor zone being adapted to receive one or more photovoltaic elements, each receptor zone having a different surfacing than the area of the top surface adjacent to it.
Abstract:
The present invention relates more particularly to roofing products for use with photovoltaic elements, and to photovoltaic systems that include one or more photovoltaic elements joined to a roofing substrate. In one aspect, the invention provides a roofing product including: a bituminous roofing substrate having a top surface; and roofing granules embedded in the top surface of the roofing substrate, wherein in at least one over-pressed zone of the roofing product, the roofing granules are embedded so that (a) the over-pressed zone exhibits a 0.20 gram loss or less in a rub test as described in ASTM D-4977; or (b) in the over-pressed zone the average granule embed volume fraction is at least 0.5; or (c) in the over-pressed zone, the average distance between the top of the roofing granules and the top surface of the bituminous roofing substrate is 1.0 mm or less.
Abstract:
The present invention relates generally to the photovoltaic generation of electrical energy. The present invention relates more particularly to photovoltaic arrays for use in photovoltaically generating electrical energy. Aspects of the present invention provide a variety of photovoltaic roofing elements and systems that include, for example, interlocking geometries to provide for water handling and integration with conventional roofing materials; and wire management features that can protect wiring and associated electrical components from physical and/or environmental damage.
Abstract:
The present invention relates more particularly to roofing products for use with photovoltaic elements, and to photovoltaic systems that include one or more photovoltaic elements joined to a roofing substrate. In one aspect, the invention provides a roofing product including: a bituminous roofing substrate having a top surface; and roofing granules embedded in the top surface of the roofing substrate, wherein in at least one over-pressed zone of the roofing product, the roofing granules are embedded so that (a) the over-pressed zone exhibits a 0.20 gram loss or less in a rub test as described in ASTM D-4977; or (b) in the over-pressed zone the average granule embed volume fraction is at least 0.5; or (c) in the over-pressed zone, the average distance between the top of the roofing granules and the top surface of the bituminous roofing substrate is 1.0 mm or less.
Abstract:
The present invention relates generally to roofing products. The present invention relates more particularly to roofing products for use with photovoltaic elements, and to photovoltaic systems that include one or more photovoltaic elements joined to a roofing substrate. In one embodiment, a roofing product includes a flexible roofing substrate having a top surface, the top surface having one or more granule-coated zones thereon capable of acting as a receptor zone or an exposure zone, each zone being adapted to receive one or more photovoltaic elements; and an adhesive suitable for securing photovoltaic elements to one or more of the granule-coated zones, the adhesive capable of forming a bond to the granules and the top surface of the flexible roofing substrate and to the bottom surface of the photovoltaic elements.
Abstract:
A roofing shingle includes a shingle body having a buttlap portion with a butt edge and a headlap portion with a head edge. The shingle body also has a first side edge, a second side edge, and an exposure zone extending from the butt edge toward the headlap portion that is configured to be exposed to the environment when the shingle is installed on a roof. A water impermeable sheet is attached to the shingle body. The sheet has a width, length, first end and second end. The width extends from approximately the head edge to approximately the butt edge of the shingle body. The length extends from the first end to the second end. At least a portion of the length extends beyond the first side edge of the shingle body by at least about 2 inches. The sheet is formed from a different material than the shingle body.
Abstract:
The present invention relates generally to roofing products. The present invention relates more particularly to roofing products for use with photovoltaic elements, and to photovoltaic systems that include one or more photovoltaic elements joined to a roofing substrate. In one embodiment, a roofing product includes a flexible roofing substrate having a top surface, the top surface having one or more granule-coated zones thereon capable of acting as a receptor zone or an exposure zone, each zone being adapted to receive one or more photovoltaic elements; and an adhesive suitable for securing photovoltaic elements to one or more of the granule-coated zones, the adhesive capable of forming a bond to the granules and the top surface of the flexible roofing substrate and to the bottom surface of the photovoltaic elements.
Abstract:
The present invention relates generally to roofing or siding products. The present invention relates more particularly to roofing or siding products for use with photovoltaic elements, and to photovoltaic systems that include one or more photovoltaic elements joined to a roofing or siding substrate. In one embodiment, a roofing product includes a rigid roofing or siding substrate having a top surface, the top surface having one or more receptor zones thereon, each receptor zone being adapted to receive one or more photovoltaic elements, each receptor zone having a different surfacing than the area of the top surface adjacent to it.
Abstract:
The present invention relates generally to roofing products. The present invention relates more particularly to roofing products for use with photovoltaic elements, and to photovoltaic systems that include one or more photovoltaic elements is joined to a roofing substrate. In one embodiment, a roofing product includes a flexible roofing substrate having a top surface having an exposure area, the exposure area having one or more receptor zones thereon, each receptor zone being adapted to receive one or more photovoltaic elements, each receptor zone having a different surfacing than the area of the top surface adjacent to it, wherein the one or more receptor zones and/or the exposure area have a height of about eight inches. In another embodiment, a photovoltaic roofing element includes a flexible roofing substrate having a top surface, the top surface having an exposure area having a height of about eight inches; and one or more photovoltaic elements disposed in the exposure area of the top surface of the flexible roofing substrate, each photovoltaic element having a height of about eight inches.