Abstract:
An inverter-based comparator, powered between a first supply voltage and a second supply voltage being lower than the first supply voltage, includes a first inverter branch composed of at least one first P-type transistor and at least one first N-type transistor; and a second inverter branch composed of at least one second P-type transistor, at least one second N-type transistor and at least two tuning switches. The first inverter branch and the second inverter branch are configured to compare an input voltage with an internal trigger point, thereby generating a compare voltage at an interconnected node. One of the at least two tuning switches is controlled to isolate the first supply voltage and another is controlled to isolate the second supply voltage to compensate for trigger point shifting.
Abstract:
A boost converter includes an inductor and a diode electrically connected in series between an input voltage and an output voltage; a transistor electrically coupled to an interconnected node of the inductor and the diode; and a controller that controls switching of the transistor according to a transient mode and an estimated load current. The output voltage in a light-to-heavy load transient mode has at least one first valley point with a value of a transient voltage threshold, followed by at least one second valley point with a value higher than the first valley point, before exiting the light-to-heavy load transient mode.
Abstract:
An all-MOSFET voltage reference circuit includes a first cascaded branch configured to generate a bias current and composed of a first current source and a diode-connected first N-type transistor connected at a first interconnected node; a second cascaded branch composed of a second current source, a diode-connected second N-type transistor and a third N-type transistor connected with the second N-type transistor disposed in between, wherein the second N-type transistor and the third N-type transistor are connected at a second interconnected node; a third cascaded branch composed of a third current source and a diode-connected fourth N-type transistor connected at an output node that provides a reference voltage; and an amplifier with a non-inverting node coupled to the first interconnected node and an inverting node coupled to the second interconnected node. A threshold voltage of the third N-type transistor is larger than a threshold voltage of the second N-type transistor.
Abstract:
A reliability based keyframe switching system adaptable to iterative closest point (ICP) includes a camera that captures frames; a matching device that determines corresponding pairing between the frames for an ICP operation to form a set of plural point-pairs; a transformation device that performs transformation estimation to estimate transformation that minimizes distances of the point-pairs, and determines whether the estimated transformation converges; and a reliability device that determines whether the ICP operation is reliable, and replaces a current keyframe with a new keyframe if the ICP operation is determined to be unreliable.
Abstract:
An artificial neural network regularization system for a recognition device includes an input layer generating an initial feature map of an image; a plurality of hidden layers convoluting the initial feature map to generate an object feature map; and a matching unit receiving the object feature map and performing matching accordingly to output a recognition result. A first inference block and a second inference block are disposed in at least one hidden layer of an artificial neural network. The first inference block is turned on and the second inference block is turned off in first mode, in which the first inference block receives only output of preceding-layer first inference block. The first inference block and the second inference block are turned on in second mode, in which the second inference block receives output of preceding-layer second inference block and output of preceding-layer first inference block.
Abstract:
The present invention is directed to an adaptive method for object detection. A predetermined number of next window images following a current window image are skipped, if a current likelihood value is less than a predetermined background threshold. The object detection early terminates, if a previous window image preceding the current window image contains the object to be detected and the current likelihood value is greater than or equal to a predetermined foreground threshold.
Abstract:
A clustering method with a two-stage local binary pattern includes generating a gradient direction value according to a center sub-block and neighbor sub-blocks of a patch of an image; quantizing the gradient direction value, thereby generating a quantized gradient direction value; generating a gradient magnitude value according to the gradient direction value; quantizing the gradient magnitude value, thereby generating a quantized gradient magnitude value; concatenating the quantized gradient direction value and the quantized gradient magnitude value to generate a two-stage local binary pattern (2SLBP) value; and performing clustering of super-resolution imaging by using the 2SLBP value as an index.
Abstract:
A clustering method with a two-stage local binary pattern includes generating a gradient direction value according to a center sub-block and neighbor sub-blocks of a patch of an image; quantizing the gradient direction value, thereby generating a quantized gradient direction value; generating a gradient magnitude value according to the gradient direction value; quantizing the gradient magnitude value, thereby generating a quantized gradient magnitude value; concatenating the quantized gradient direction value and the quantized gradient magnitude value to generate a two-stage local binary pattern (2SLBP) value; and performing clustering of super-resolution imaging by using the 2SLBP value as an index.
Abstract:
A clock and data recovery (CDR) circuit is provided. A phase detection circuit receives an input signal and a clock signal to output a first voltage signal. A first comparing circuit determines whether the first voltage signal is within a voltage range to output a first up signal and a first down signal. A counting circuit updates a counting value according to the input signal and the clock signal. A second comparing circuit determines whether the counting value is within a value range to output a second up signal and a second down signal. A selection circuit outputs a second voltage signal according to the first up signal, the first down signal, the second up signal, and the second down signal. A voltage controlled oscillator outputs the clock signal according to the first voltage signal and the second voltage signal.
Abstract:
A content adaptive compression system includes a plurality of encoders being coupled to receive a portion of an image, and accordingly generating candidate compressed codes, respectively, the plurality of encoders being configured for encoding images of different contents. An error count unit is configured to determine an amount of error between the image and the candidate compressed code for each of the encoders. A mode decision unit is coupled to receive a plurality of the amount of error, the candidate compressed code associated with least amount of error being outputted as an adaptive compressed code for the image.