Abstract:
The presently disclosed subject matter relates to methods and compositions for protecting cells and or tissues from damage due to ischemia. In particular, the presently disclosed subject matter relates to the protective action of cyclin dependent kinase 4/6 (CDK4/6) inhibitors administered to subjects that have been exposed to, or that are at risk of, ischemia.
Abstract:
The present invention relates to the treatment of EGFR-mediated disease, particularly cancer, which is resistant to tyrosine kinase inhibitor therapies. Methods for treatment of cancer and reduction of tumor growth in individuals with secondary EGFR mutations, particularly tyrosine kinase domain mutations, resistant to standard therapy are provided. The invention provides methods for the treatment of tyrosine kinase inhibitor resistant cancers with anti-EGFR antibodies. Methods for treatment of recurrent lung cancer, including non-small cell lung carcinoma which is resistant to tyrosine kinase inhibitors, with the antibody anti-EGFR mAb806 are described.
Abstract:
The presently disclosed subject matter relates to methods and compositions for protecting cells and or tissues from damage due to ischemia. In particular, the presently disclosed subject matter relates to the protective action of cyclin dependent kinase 4/6 (CDK4/6) lithibitors administered to subjects that have been exposed to, or that are at risk of, ischemia.
Abstract:
The invention relates to compositions, kits, and methods for detecting, characterizing, preventing, and treating human cancer. A variety of chromosomal regions (MCRs) and markers corresponding thereto, are provided, wherein alterations in the copy number of one or more of the MCRs and/or alterations in the amount, structure, and/or activity of one or more of the markers is correlated with the presence of cancer.
Abstract:
The invention relates to compositions, kits, and methods for detecting, characterizing, preventing, and treating human cancer. A variety of chromosomal regions (MCRs) and markers corresponding thereto, are provided, wherein alterations in the copy number of one or more of the MCRs and/or alterations in the amount, structure, and/or activity of one or more of the markers is correlated with the presence of cancer.
Abstract:
The present invention relates to a combination of cell lines as well as a method of selecting (a) cell(s), (a) tissue(s) or (a) cell culture(s) with susceptibility to an HSP90 inhibitor anti-tumor agent. Also a method for determining the responsiveness of a mammalian tumor cell or cancer cell or collection of cells or cell lines to treatment with a drug such as an HSP90 inhibitor anti-tumor agent is described herein.
Abstract:
The present invention relates to a method of selecting (a) cell(s), (a) tissue(s) or (a) cell culture(s) with susceptibility to an HSP90 inhibitor. Also a method for determining the responsiveness of a mammalian tumor cell or cancer cell to treatment with an HSP90 inhibitor is described herein. In particular, the present invention provides for an in vitro method for the identification of a responder for or a patient sensitive to an HSP90 inhibitor and uses of an oligo- or polynucleotide capable of detecting (an) activating mutation(s) in the KRAS gene are provided. The present invention also relates to a method of monitoring the efficacy of a treatment of a cancer characterized by the presence of at least one activating mutation in the KRAS gene, and. optionally, in the EGFR gene and/or the BRAF gene. In addition, a method of predicting the efficacy of a cancer treatment is described, in particular in a cancer that is characterized by the presence of at least one activating mutation in the KRAS gene. and. optionally, in the EGFR gene and/or the BRAF gene. Also the use of a (transgenic) non-human animal or a (transgenic) cell having at least one activating mutation in the KRAS gene, and, optionally, in the EGFR gene and/or the BRAF gene for screening and/or validation of a medicament for the treatment of said cancer is described and a kit useful for carrying out the methods described herein is provided.
Abstract:
The present invention relates to the treatment of EGFR-mediated disease, particularly cancer, which is resistant to tyrosine kinase inhibitor therapies. Methods for treatment of cancer and reduction of tumor growth in individuals with secondary EGFR mutations, particularly tyrosine kinase domain mutations, resistant to standard therapy are provided. The invention provides methods for the treatment of tyrosine kinase inhibitor resistant cancers with anti-EGFR antibodies. Methods for treatment of recurrent lung cancer, including non-small cell lung carcinoma which is resistant to tyrosine kinase inhibitors, with the antibody anti-EGFR mAb806 are described.