Abstract:
A bioprocessing system for protein manufacturing from human blood is provided that is compact, integrated and suited for on-demand production and delivery of therapeutic proteins to patients. The patient's own blood can be used as the source of cell extracts for the production of the therapeutic proteins.
Abstract:
Nanosecond pulsed electric field (nsPEF) parameters for destroying tumors with a single treatment are described. A nsPEF generator may be used with an electrode assembly to apply the pulses to one or more tumors where the parameters for the nsPEF are optimized for treating such tumors.
Abstract:
Input and output buffer circuitry (12, 14, 16) is provided which are compatible with busses operating at different voltage levels. The buffer circuitry is self-configuring based on the type of bus to which it is coupled. The buffer circuitry includes voltage level detect circuitry (20) and pad level detect circuitry (28) which can reconfigure driver (34, 54) and level shifter circuits (24, 26) in order to protect the switching devices of the buffers.
Abstract:
Certain aspects of a method for iSCSI boot may include loading boot BIOS code from a host bus adapter or a network interface controller (NIC) by an iSCSI client device. A connection may be established to an iSCSI target by the iSCSI client device after loading the boot BIOS code. The boot BIOS code may be chained to at least one interrupt handler over iSCSI protocol. An operating system may be remotely booted from the iSCSI target by the iSCSI client device based on chaining the interrupt handler. An Internet protocol (IP) address and/or location of the iSCSI target may be received. At least one iSCSI connection may be initiated to the iSCSI target based on chaining at least one interrupt handler. The iSCSI target may be booted in real mode if at least one master boot record is located in the memory.
Abstract:
Certain aspects of a method for iSCSI boot may include loading boot BIOS code from a host bus adapter or a network interface controller (NIC) by an iSCSI client device. A connection may be established to an iSCSI target by the iSCSI client device after loading the boot BIOS code. The boot BIOS code may be chained to at least one interrupt handler over iSCSI protocol. An operating system may be remotely booted from the iSCSI target by the iSCSI client device based on chaining the interrupt handler. An Internet protocol (IP) address and/or location of the iSCSI target may be received. At least one iSCSI connection may be initiated to the iSCSI target based on chaining at least one interrupt handler. The iSCSI target may be booted in real mode if at least one master boot record is located in the memory.
Abstract:
Certain aspects of a method for iSCSI boot may include loading boot BIOS code from a host bus adapter or a network interface controller (NIC) by an iSCSI client device. A connection may be established to an iSCSI target by the iSCSI client device after loading the boot BIOS code. The boot BIOS code may be chained to at least one interrupt handler over iSCSI protocol. An operating system may be remotely booted from the iSCSI target by the iSCSI client device based on chaining the interrupt handler. An Internet protocol (IP) address and/or location of the iSCSI target may be received. At least one iSCSI connection may be initiated to the iSCSI target based on chaining at least one interrupt handler. The iSCSI target may be booted in real mode if at least one master boot record is located in the memory.
Abstract:
Nanosecond pulsed electric field (nsPEF) parameters for destroying tumors with a single treatment are described. A nsPEF generator may be used with an electrode assembly to apply the pulses to one or more tumors where the parameters for the nsPEF are optimized for treating such tumors.
Abstract:
Certain aspects of a method for iSCSI boot may include loading boot BIOS code from a host bus adapter or a network interface controller (NIC) by an iSCSI client device. A connection may be established to an iSCSI target by the iSCSI client device after loading the boot BIOS code. The boot BIOS code may be chained to at least one interrupt handler over iSCSI protocol. An operating system may be remotely booted from the iSCSI target by the iSCSI client device based on chaining the interrupt handler. An Internet protocol (IP) address and/or location of the iSCSI target may be received. At least one iSCSI connection may be initiated to the iSCSI target based on chaining at least one interrupt handler. The iSCSI target may be booted in real mode if at least one master boot record is located in the memory.
Abstract:
A floating point unit (FPU) which generates a correction signal and an inverted leading zero signal. Exponent logic, is configured to generate an exponent value, a first incremented exponent value, and a second incremented exponent value. Exponent adjust and rounding logic configured to receive the exponent value, the first incremented exponent value, and the second incremented exponent value. The exponent adjust and rounding logic is further configured to add the inverted leading zero signal to the first incremented exponent value and the second incremented exponent value, thereby producing an exponent output value, a first incremented exponent output value, and a second incremented exponent output value. Either the exponent output value, the first incremented exponent output value, or the second exponent output value are then selected.
Abstract:
Systems and methods for treating tumors on or within internal organs of mammals that have been imaged with endoscopic ultrasound are described. The system uses an expandable bipolar electrode assembly that can be imaged by ultrasound and can penetrate, e.g., the stomach, intestine or bowel wall, etc. and be positioned in or around the tumor on an internal organ while being guided by an operator who visualizes its position with ultrasound imaging. It utilizes an electrode assembly that extends down an internal cavity in the endoscope to allow the operator to spread the electrodes for pulse delivery of a nanosecond pulsed electric field (nsPEF) to the tumor.