Abstract:
A semiconductor device (e.g., a flip chip) includes a substrate layer that is separated from a drain contact by an intervening layer. Trench-like feed-through elements that pass through the intervening layer are used to electrically connect the drain contact and the substrate layer when the device is operated.
Abstract:
A semiconductor device (e.g., a flip chip) includes a substrate layer that is separated from a drain contact by an intervening layer. Trench-like feed-through elements that pass through the intervening layer are used to electrically connect the drain contact and the substrate layer when the device is operated.
Abstract:
Embodiments of the present invention provide a striped or closed cell trench metal-oxide-semiconductor field effect transistor (TMOSFET). The striped or closed cell TMOSFET comprises a source region, a body region disposed above the source region, a drift region disposed above the body region, a drain region disposed above the drift region. A gate region is disposed above the source region and adjacent the body region. A gate insulator region electrically isolates the gate region from the source region, body region, drift region and drain region. The body region is electrically coupled to the source region.
Abstract:
Embodiments of the present invention provide a striped or closed cell trench metal-oxide-semiconductor field effect transistor (TMOSFET). The striped or closed cell TMOSFET comprises a source region, a body region disposed above the source region, a drift region disposed above the body region, a drain region disposed above the drift region. A gate region is disposed above the source region and adjacent the body region. A gate insulator region electrically isolates the gate region from the source region, body region, drift region and drain region. The body region is electrically coupled to the source region.
Abstract:
Embodiments of the present invention are directed toward a trench metal-oxide-semiconductor field effect transistor (TMOSFET) device. The TMOSFET device includes a source-side-gate TMOSFET coupled to a drain-side-gate TMOSFET 1203. A switching node metal layer couples the drain of the source-side-gate TMOSFET to the source of the drain-side-gate TMOSFET so that the TMOSFETs are packaged as a stacked or lateral device.
Abstract:
In a trench MOSFET, the lower portion of the trench contains a buried source electrode, which is insulated from the epitaxial layer and semiconductor substrate but in electrical contact with the source region. When the MOSFET is in an “off” condition, the bias of the buried source electrode causes the “drift” region of the mesa to become depleted, enhancing the ability of the MOSFET to block current. The doping concentration of the drift region can therefore be increased, reducing the on-resistance of the MOSFET. The buried source electrode also reduces the gate-to-drain capacitance of the MOSFET, improving the ability of the MOSFET to operate at high frequencies. The substrate may advantageously include a plurality of annular trenches separated by annular mesas and a gate metal layer that extends outward from a central region in a plurality of gate metal legs separated by source metal regions.
Abstract:
A process for manufacturing a trench MIS device includes depositing a conformal nitride layer in the trench; etching the nitride layer to create an exposed area at the bottom of the trench; and heating the substrate and thereby growing an oxide layer in the exposed area. This process causes the mask layer to “lift off”, creating a “bird's beak” structure. This becomes a “transition region”, where the thickness of the oxide layer decreases gradually in a direction away from the exposed area. The method further includes diffusing a dopant into the substrate, the dopant forming a PN junction with a remaining portion of said substrate, and controlling the diffusion such that the PN junction intersects the trench in the transition region. Because the thickness of the oxide layer decreases gradually, the PN junction does not need to be located at a particular point, i.e., there is a margin of error. This improves the manufacturability of the device and enhances its breakdown characteristics.
Abstract:
A trench MOSFET is formed by creating a trench in a semiconductor substrate, then forming a barrier layer over a portion of the side wall of the trench. A thick insulating layer is deposited in the bottom of the trench. The barrier layer is selected such that the thick insulating layer deposits in the bottom of the trench at a faster rate than the thick insulating layer deposits on the barrier layer. Embodiments of the present invention avoid stress and reliability problems associated with thermal growth of insulating layers, and avoid problems with control of the shape and thickness of the thick insulating layer encountered when a thick insulating layer is deposited, then etched to the proper shape and thickness.
Abstract:
Embodiments of the present invention are directed toward a trench metal-oxide-semiconductor field effect transistor (TMOSFET) device. The TMOSFET device includes a source-side-gate TMOSFET coupled to a drain-side-gate TMOSFET 1203. A switching node metal layer couples the drain of the source-side-gate TMOSFET to the source of the drain-side-gate TMOSFET so that the TMOSFETs are packaged as a stacked or lateral device.
Abstract:
In a trench MOSFET, the lower portion of the trench contains a buried source electrode, which is insulated from the epitaxial layer and semiconductor substrate but in electrical contact with the source region. When the MOSFET is in an “off” condition, the bias of the buried source electrode causes the “drift” region of the mesa to become depleted, enhancing the ability of the MOSFET to block current. The doping concentration of the drift region can therefore be increased, reducing the on-resistance of the MOSFET. The buried source electrode also reduces the gate-to-drain capacitance of the MOSFET, improving the ability of the MOSFET to operate at high frequencies. The substrate may advantageously include a plurality of annular trenches separated by annular mesas and a gate metal layer that extends outward from a central region in a plurality of gate metal legs separated by source metal regions.