Abstract:
A process for forming a protective layer on a metal surface includes the steps of: providing a metal material having an oxygen containing layer; applying at least two compounds to the oxygen containing layer of the metal material wherein a first compound applied is a molecularly large compound; and applying at least a second compound to the oxygen containing layer of the metal material wherein the second compound is molecularly small.
Abstract:
An electrochemical device, having an anode containing magnesium; a cathode stable to a voltage of at least 3.2 V relative to a magnesium reference; and an electrolyte containing an electrochemically active magnesium salt obtained by mixing an organic magnesium compound with an aluminum compound in an ether solvent and separation of the electrochemically active salt from the reaction mixture is provided. The separated electrochemically active salt is stable and safe to handle in comparison to conventional Grignard based electrolyte systems.
Abstract:
A battery that includes a cathode, anode and an electrolytic solution containing an organic electrolyte solvent including a compound of the formula: R1—CO—NR2—OR3 wherein R1 is selected from alkanes, alkenes, alkynes, aryls and their substituted derivatives and perfluorinated analogues; R2 is selected from alkanes, alkenes, alkynes, aryls and their substituted derivatives; R3 is selected from alkanes, alkenes, alkynes, aryls and their substituted derivatives wherein the electrolyte is stable at voltages of greater than 4.0 volts.
Abstract:
Improved polymer-based materials are described, for example for use as an electrode binder in a fuel cell. A fuel cell according to an example of the present invention comprises a first electrode including a catalyst and an electrode binder, a second electrode, and an electrolyte located between the first electrode and the second electrode. The electrolyte may be a proton-exchange membrane (PEM). The electrode binder includes one or more polymers, such as a polyphosphazene.
Abstract:
A process for forming a protective layer on a metal surface includes the steps of: providing a metal material having an oxygen containing layer; applying at least two compounds to the oxygen containing layer of the metal material wherein a first compound applied is a molecularly large compound; and applying at least a second compound to the oxygen containing layer of the metal material wherein the second compound is molecularly small.
Abstract:
The invention relates to proton-conducting polymers, including tetrazole-containing polymers. Proton-conducting membranes useful for fuel cell applications are formed from mixtures of a polymer with one or more non-aqueous proton sources. In representative examples of the present invention, tetrazole groups are attached to a polymer backbone such as polyphosphazene, the tetrazole groups interacting with the proton source.
Abstract:
The invention relates to proton-conducting polymers, including tetrazole-containing polymers. Proton-conducting membranes useful for fuel cell applications are formed from mixtures of a polymer with one or more non-aqueous proton sources. In representative examples of the present invention, tetrazole groups are attached to a polymer backbone such as polyphosphazene, the tetrazole groups interacting with the proton source.
Abstract:
A workpiece structure having a hole therein is repaired by preparing a stack having a first confinement sheet, a first donor sheet, a workpiece structure having a hole therein, a plug of a plug material in the hole, optionally a second donor sheet, and a second confinement sheet. The first confinement sheet, the first donor sheet, the second donor sheet, and the second confinement sheet each overlie the hole. The first confinement sheet and the second confinement sheet each melt at a temperature greater than do the first donor sheet, the plug, and the second donor sheet. The stack is locally heated at the hole using an electrical current source to a temperature sufficiently high to locally melt the first donor sheet, the plug, the second donor sheet, and the workpiece structure. The stack is thereafter cooled to solidify all melted material and form a weldment.
Abstract:
The invention relates to methods of preparing metal particles on a support material, including platinum-containing nanoparticles on a carbon support. Such materials can be used as electrocatalysts, for example as improved electrocatalysts in polymer electrolyte membrane fuel cells (PEM-FCs).
Abstract:
An electrochemical test cell, containing an anode comprising a metal as an active component; a cathode comprising a porous chemically inert tube containing an active material compatible with the metal of the anode; and an electrolyte; wherein the only metal in contact with the electrolyte is the metal of the anode, is provided. This test cell is useful in a method to evaluate various combinations of materials for suitability as a combination for preparation of a battery.