Abstract:
Memory devices having an increased effective channel length and/or improved TPD characteristics, and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The bit line dielectrics can extend into the semiconductor. The memory cell contains a charge trapping dielectric stack, a poly gate, a pair of pocket implant regions, and a pair of bit lines. The bit line can be formed by an implant process at a higher energy level and/or a higher concentration of dopants without suffering device short channel roll off issues because spacers at bit line sidewalls constrain the implant in narrower implant regions.
Abstract:
Memory devices having improved TPD characteristics and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The bit line dielectrics can extend into the semiconductor. The memory cell contains one or more charge storage nodes, a first poly gate, a pair of first bit lines, and a pair of second bit lines. The second bit line can be formed at a higher energy level, a higher concentration of dopants, or a combination thereof compared to an energy level and a concentration of dopants of the first bit line.
Abstract:
Memory devices having improved TPD characteristics and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The bit line dielectrics can extend into the semiconductor. The memory cell contains one or more charge storage nodes, a first poly gate, a pair of first bit lines, and a pair of second bit lines. The second bit line can be formed at a higher energy level, a higher concentration of dopants, or a combination thereof compared to an energy level and a concentration of dopants of the first bit line.
Abstract:
The present invention provides compositions and a novel high-yielding process for preparing high purity Group III nitrides. The process involves heating a Group III metal and a catalytic amount of a metal wetting agent in the presence of a nitrogen source. Group III metals can be stoichiometrically converted into high purity Group III nitride powders in a short period of time. The process can provide multi-gram quantities of high purity Group III nitrides in relatively short reaction times. Detailed characterizations of GaN powder were preformed and are reported herein, including morphology and structure by SEM and XRD, optical properties by cathodoluminescence (CL), and Raman spectra to determine the quality of the GaN particles. The purity of GaN powder was found to be greater than 99.9% pure, as analyzed by Glow Discharge Mass Spectrometry (GDMS). Green, yellow, and red light emission can be obtained from doped GaN powders.
Abstract:
Memory devices having improved TPD characteristics and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line openings containing a bit line dielectric between the memory cells. The memory cell contains a charge storage layer and a first poly gate. The bit line opening extends into the semiconductor substrate. By containing the bit line dielectric in the bit line openings that extend into the semiconductor substrate, the memory device can improve the electrical isolation between memory cells, thereby preventing and/or mitigating TPD.
Abstract:
Memory devices having an increased effective channel length and/or improved TPD characteristics, and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The memory cell contains a charge trapping dielectric stack, a poly gate, a pair of pocket implant regions, and a pair of bit lines. The bit line can be formed by an implant process at a higher energy level and/or a higher concentration of dopants without suffering device short channel roll off issues because spacers at bit line sidewalls constrain the implant in narrower implant regions.
Abstract:
The present invention provides compositions and a novel high-yielding process for preparing high purity Group III nitrides. The process involves heating a Group III metal and a catalytic amount of a metal wetting agent in the presence of a nitrogen source. Group III metals can be stoichiometrically converted into high purity Group III nitride powders in a short period of time. The process can provide multi-gram quantities of high purity Group III nitrides in relatively short reaction times. Detailed characterizations of GaN powder were performed and are reported herein, including morphology and structure by SEM and XRD, optical properties by cathodoluminescence (CL), and Raman spectra to determine the quality of the GaN particles. The purity of GaN powder was found to be greater than 99.9% pure, as analyzed by Glow Discharge Mass Spectrometry (GDMS). Green, yellow, and red light emission can be obtained from doped GaN powders.
Abstract:
Memory cells containing two split sub-lithographic charge storage nodes on a semiconductor substrate and methods for making the memory cells are provided. The methods can involve forming two split sub-lithographic charge storage nodes by using spacer formation techniques. By removing an exposed portion of a fist poly layer between sloping side surfaces or outer surfaces of spacers while leaving portions of the first poly layer protected by the spacers, the method can provide two split sub-lithographic first poly gates. Further, by removing an exposed portion of a charge storage layer between sloping side surfaces or outer surfaces of spacers, the method can provide two split, narrow portions of the charge storage layer, which subsequently form two split sub-lithographic charge storage nodes.
Abstract:
Methods of replacing/reforming a top oxide around a charge storage element of a memory cell and methods of improving quality of a top oxide around a charge storage element of a memory cell are provided. The method can involve removing a first poly over a first top oxide from the memory cell; removing the first top oxide from the memory cell; and forming a second top oxide around the charge storage element. The second top oxide can be formed by oxidizing a portion of the charge storage element or by forming a sacrificial layer over the charge storage element and oxidizing the sacrificial layer to a second top oxide.
Abstract:
GaN is grown by creating a Ga vapor from a powder, and using an inert purge gas from a source to transport the vapor to a growth site where the GaN growth takes place. In one embodiment, the inert gas is N2, and the powder source is GaN powder that is loaded into source chambers. The GaN powder is congruently evaporated into Ga and N2 vapors at temperatures between approximately 1000 and 1200° C. The formation of Ga liquid in the powder is suppressed by the purging of an inert gas through the powder. The poser may also be isolated from a nitride containing gas provided at the growth cite. In one embodiment, the inert gas is flowed through the powder.
Abstract translation:通过从粉末中产生Ga蒸气并使用来自源的惰性吹扫气体将蒸汽输送到发生GaN生长的生长位置来生长GaN。 在一个实施方案中,惰性气体是N 2,并且粉末源是装载到源室中的GaN粉末。 在约1000-1200℃的温度下,GaN粉末一致地蒸发成Ga和N 2 H 2蒸汽。通过粉末中的惰性气体的吹扫来抑制粉末中的Ga液的形成。 该位置也可以与生长引起的含氮气体隔离。 在一个实施方案中,惰性气体流过粉末。