Abstract:
A semiconductor device includes a semiconductor substrate; a tunneling layer over the semiconductor substrate, wherein the tunneling layer has a first conduction band; a storage layer over the tunneling layer, wherein the storage layer has a second conduction band; a blocking layer over the storage layer, wherein the blocking layer has a third conduction band; a gate electrode over the blocking layer; and at least one of a first leakage-inhibition layer and a second leakage-inhibition layer. The first leakage-inhibition layer is between the tunneling layer and the storage layer, and has a fourth conduction band lower than the first conduction band. The second leakage-inhibition layer is between the blocking layer and the gate electrode, and has a fifth conduction band lower than the third conduction band.
Abstract:
A method of forming a semiconductor device includes performing a first pre-amorphous implantation process on a substrate, where the substrate has a gate stack. The method further includes forming a first stress film over the substrate. The method also includes performing a first annealing process on the substrate and the first stress film. The method further includes performing a second pre-amorphous implantation process on the annealed substrate, forming a second stress film over the substrate, and performing a second annealing process on the substrate and the second stress film.
Abstract:
A method of fabricating and a semiconductor device with multiple dislocation structures is disclosed. The exemplary semiconductor device includes gate structure overlying a top surface of a semiconductor substrate and a first gate spacer disposed on a sidewall of the gate structure and overlying the top surface of the substrate. The semiconductor device further includes a crystallized semiconductor material overlying the top surface of the semiconductor substrate and adjacent to a sidewall of the first gate spacer. The semiconductor device further includes a second gate spacer disposed on the sidewall of the first gate spacer and overlying the crystallized semiconductor material. The semiconductor device further includes a first stressor region disposed in the semiconductor substrate and a second stressor region disposed in the semiconductor substrate and in the crystallized semiconductor material.
Abstract:
A method of forming a semiconductor device includes performing a first pre-amorphous implantation process on a substrate, where the substrate has a gate stack. The method further includes forming a first stress film over the substrate. The method also includes performing a first annealing process on the substrate and the first stress film. The method further includes performing a second pre-amorphous implantation process on the annealed substrate, forming a second stress film over the substrate, and performing a second annealing process on the substrate and the second stress film.
Abstract:
A semiconductor device includes a semiconductor substrate; a tunneling layer over the semiconductor substrate, wherein the tunneling layer has a first conduction band; a storage layer over the tunneling layer, wherein the storage layer has a second conduction band; a blocking layer over the storage layer, wherein the blocking layer has a third conduction band; a gate electrode over the blocking layer; and at least one of a first leakage-inhibition layer and a second leakage-inhibition layer. The first leakage-inhibition layer is between the tunneling layer and the storage layer, and has a fourth conduction band lower than the first conduction band. The second leakage-inhibition layer is between the blocking layer and the gate electrode, and has a fifth conduction band lower than the third conduction band.
Abstract:
A method of fabricating and a semiconductor device with multiple dislocation structures is disclosed. The exemplary semiconductor device includes gate structure overlying a top surface of a semiconductor substrate and a first gate spacer disposed on a sidewall of the gate structure and overlying the top surface of the substrate. The semiconductor device further includes a crystallized semiconductor material overlying the top surface of the semiconductor substrate and adjacent to a sidewall of the first gate spacer. The semiconductor device further includes a second gate spacer disposed on the sidewall of the first gate spacer and overlying the crystallized semiconductor material. The semiconductor device further includes a first stressor region disposed in the semiconductor substrate and a second stressor region disposed in the semiconductor substrate and in the crystallized semiconductor material.