Abstract:
A system, method, and content provider server for creating a catalog of electronic content, wherein a customer accesses the catalog to browse and purchase electronic content, which is downloaded over a network to a customer premises where the electronic content is presented on a rendering device. Different pieces of the electronic content have different bandwidth requirements and impose different requirements for the rendering device. The server determines whether customer premises capabilities, including those of the rendering device, meet the requirements of each piece of electronic content, and populates the catalog only with pieces of electronic content for which the customer premises capabilities meet the requirements of the electronic content. Alternatively, the server may include all of the electronic content in the catalog while marking those pieces for which the customer premises capabilities do not meet the requirements of the electronic content.
Abstract:
A system and method that utilize a learning system to maintain a set of geographical locations indicating an area where network data coverage is poor. When it is determined that a client device is moving towards such an area, the client is forced or instructed to switch to a lower delivery bitrate for video segments in order to force the client's Adaptive Bit Rate (ABR) playback buffer to fill itself with enough low-quality video segments to enable the client to cross the area without video playback interruption. Thus, the client mobile device may be preemptively forced to choose the lowest bitrate specified in a manifest file for the delivered video segments as the bitrate for downloading video segments when approaching the poor coverage area. Hence, the client device can maintain a minimum level of Quality of Service (QoS) when moving through network areas with poor data coverage.
Abstract:
A scheme for modulating an adaptive bitrate (ABR) streaming client engaged in a current ABR streaming session. In one implementation, a determination is made whether a wireless UE device executing the ABR streaming client is approaching a radio white spot area. If so, a video buffer of the ABR client is configured to preload lower quality video segments to last for the duration of the radio white spot area. One or more ABR client controls may be selectively deactivated while the wireless UE device is in the radio white spot area.
Abstract:
A method of managing bandwidth allocation across a video pipe that delivers both streaming adaptive bitrate (ABR) content and progressive download ABR content includes receiving a designation of a congestion boundary within a video pipe, the congestion boundary designating a first percentage of the video pipe that is to be used for streaming ABR content when congestion exists on both sides of the congestion boundary, wherein a remaining percentage of the video pipe is to be used for progressive download ABR; allocating bandwidth for streaming ABR content, wherein the gateway device can allocate for streaming content only that portion of the remaining percentage of bandwidth that is not requested for progressive download content; and allocating bandwidth for progressive download content, wherein the gateway device can allocate for progressive download content only that portion of the first percentage of bandwidth that is not requested for streaming content.
Abstract:
A system and method in which each node in a Content Distribution Network (CDN) maintains information about the most-recent state of the CDN as a whole to decide what bandwidth to use when serving a content subscriber so that the total bandwidth of the entire multimedia content streamed/delivered to the subscriber through various nodes in the CDN remains within a pre-defined bandwidth cap for the subscriber. The entire CDN is thus treated as a single edge node. Each node in a CDN may periodically transmit to all other nodes in the CDN, information about any activity that occurs at the transmitting node. Instead of reporting to all the nodes, the transmitting node may report details of its node-specific activity to a subset of “interested” nodes. Once each node has a model of what the entire CDN system is currently doing, that node can implement bandwidth management in a coherent manner.
Abstract:
A scheme for managing conflict resolution in an ABR streaming environment with respect to a bandwidth pipe serving a customer premises. In one aspect, when a session request is received from a new ABR client launched in the customer premises that includes one or more existing ABR clients having corresponding streaming sessions, a bandwidth forecasting module is configured to forecast bandwidth requirements with respect to the corresponding ABR streaming sessions after accounting for a bandwidth requirement for the new ABR client's session request. A conflict may be detected if any of forecasted bandwidth requirements violates a bitrate threshold policy relative to the corresponding ABR streaming sessions and/or the new session being requested. If there is a conflict, a conflict notification message to the new ABR client is provided and the session request from the new ABR client is rejected.
Abstract:
A system and method that utilize a learning system to maintain a set of geographical locations indicating an area where network data coverage is poor. When it is determined that a client device is moving towards such an area, the client is forced or instructed to switch to a lower delivery bitrate for video segments in order to force the client's Adaptive Bit Rate (ABR) playback buffer to fill itself with enough low-quality video segments to enable the client to cross the area without video playback interruption. Thus, the client mobile device may be preemptively forced to choose the lowest bitrate specified in a manifest file for the delivered video segments as the bitrate for downloading video segments when approaching the poor coverage area. Hence, the client device can maintain a minimum level of Quality of Service (QoS) when moving through network areas with poor data coverage.
Abstract:
A streaming policy management system and method wherein bandwidth may be allocated based on external device information received from a streaming client device connected to one or more external audio/video (A/V) devices. When a streaming network back office receives a request from the streaming client device for delivery of a particular content, wherein the request includes external device information of one or more external A/V devices connected to the streaming client device, a bandwidth is determined for streaming the particular content to the streaming client device and a request may be made to a content delivery network to create a distribution pipe having the bandwidth to accommodate the delivery of the particular content. A manifest file is provided to the streaming client device that includes one or more pointers that point to content segments of the particular content.
Abstract:
Some embodiments are directed to a method performed by a pipe control node for managing network resources that are used to transport network traffic. The method includes allocating network resources to a virtual pipe for transporting a plurality of multimedia streams through the network. Utilization of the network resources by the plurality of multimedia streams transported through the virtual pipe is monitored relative to the network resources allocated to the virtual pipe. The network resources that are used by the plurality of multimedia streams transported through the virtual pipe are managed in response to the monitored utilization. Some other embodiments are directed to a corresponding pipe control node that manages network resources which are used to transport network traffic.
Abstract:
A system and method for identifying and delivering extended media content. An extended content system receives requests to record or play identified broadcast content. The extended content system automatically obtains or preserves extended media content related to the identified broadcast content. In some instances, the system informs a subscriber that extended media content is available. If requested by the subscriber, the extended content system obtains the identified broadcast content and extended media content and provides the same to the subscriber in either a Set-Top-Box format or an Over-The-Top format.