Abstract:
The present invention provides methods for identification of cancerous cells by detection of expression levels of TTK, as well as diagnostic, prognostic and therapeutic methods that take advantage of the differential expression of these genes in mammalian cancer. Such methods can be useful in determining the ability of a subject to respond to a particular therapy, e.g., as the basis of rational therapy. In addition, the invention provides assays for identifying pharmaceuticals that modulate activity of these genes in cancers in which these genes are involved, as well as methods of inhibiting tumor growth by inhibiting activity of TTK.
Abstract:
Inhibitors of human Cks1 and human Skp2, including antisense oligonucleotides, methods, and compositions specific for human Cks1 and human Skp2, are provided. Methods of using the compositions for modulating Cks1 expression and Skp2 expression, and for regulating cell growth, particularly tumor cell growth, are also provided.
Abstract:
Inhibitors of human Akt3, including antisense oligonucleotides, methods, and compositions specific for human Akt3, are provided. Methods of using the compositions for modulating Akt3 expression and for regulating cell growth, particularly tumor cell growth, are also provided.
Abstract:
Compositions incorporating small interfering ribonucleic acid (siRNA) and certain lipid-conjugated polyamide compound-based delivery vehicles that are particularly useful in the delivery siRNA and other polynucleotides to cells. Also, methods of making and using the compositions.
Abstract:
A device and a method for detecting reflected and/or emitted light of an object (1) are proposed having at least one illumination device (2) illuminating the object (1) with pulsed light, and having at least one sensor (4, 6) capturing the light reflected and/or emitted by the object (1), and having a transport device transporting the object relative to the illumination device (2) and past the sensor 4, 6) in the direction of transport, and having a power supply (16, 17, 18, 19, 20, 21, 22) for the illumination device (2) providing the illumination device (2) with a current that is a periodic function over time, wherein a period comprises at least two current pulses (23, 24) of different magnitudes.
Abstract:
A human gene encoding a novel cyclin-dependent kinase termed hPNQALRE and its expression products can be used to provide reagents and methods for detecting neoplasia. Compositions and methods for treating proliferative disorders and neoplasia are also provided.
Abstract:
The present invention provides polynucleotides, as well as polypeptides encoded thereby, that are differentially expressed in cancer cells. These polynucleotides are useful in a variety of diagnostic and therapeutic methods. The present invention further provides methods of reducing growth of cancer cells. These methods are useful for treating cancer.
Abstract:
A polynucleotide sequence as shown in SEQ ID NO:1 is associated with metastatic potential of cancer cells, especially breast cancer cells. Methods are provided for determining the risk of metastasis of a tumor, by determining whether a tissue sample from a tumor expresses a polypeptide or mRNA encoded by a polynucleotide as shown in SEQ ID NO:1. Also provided are therapeutic methods and compositions.
Abstract:
Compositions incorporating small interfering ribonucleic acid (siRNA) and certain lipid-conjugated polyamide compound-based delivery vehicles that are particularly useful in the delivery siRNA and other polynucleotides to cells. Also, methods of making and using the compositions.
Abstract:
The present invention provides methods for identification of cancerous cells by detection of expression levels of TTK, as well as diagnostic, prognostic and therapeutic methods that take advantage of the differential expression of these genes in mammalian cancer. Such methods can be useful in determining the ability of a subject to respond to a particular therapy, e.g., as the basis of rational therapy. In addition, the invention provides assays for identifying pharmaceuticals that modulate activity of these genes in cancers in which these genes are involved, as well as methods of inhibiting tumor growth by inhibiting activity of TTK.