Abstract:
A power system for an electrical system with highly fluctuating loads is powered by one or more power sources that are slow to react to load changes. The power sources are connected to electrical equipment used on the drill rig which provide active load to the generators. One or more load banks may be positioned to provide passive load to the generators to maintain generally constant generator load, while allowing for instant access to power as active load increases. Generators may be run at 100% capacity, a maximum efficient capacity, or at a high enough level to allow for a sufficiently rapid increase in power output. At least one parameter of a drilling operation may be utilized to anticipate load demand changes.
Abstract:
A permanent magnet for a permanent magnet electric motor is bonded to a rotor. A hole having a chamfered outer edge is formed in the permanent magnet. A corresponding mounting hole is formed in the body of the rotor. A bolt is threaded through the hole in the permanent magnet and threaded into the mounting hole of the rotor. An O-ring is positioned between the head of the bolt and the permanent magnet. The O-ring may be made of an elastomeric material which may prevent cracking of the permanent magnet as components of the electric motor expand and contract with fluctuations in temperature. A magnet may be held to a rotor by a dovetail or may include a flange to be held to the rotor by a retaining ring.
Abstract:
A method for field weakening control of a three phase permanent magnet AC motor in a VFD drive. The VFD drive calculates the three phase voltages to be supplied to the AC motor via a three phase inverter using feedback and feed-forward calculations of quadrature and direct demand currents.
Abstract:
A power system for an electrical system with highly fluctuating loads is powered by one or more power sources that are slow to react to load changes. The power sources are connected to electrical equipment used on the drill rig which provide active load to the generate. One or more load banks may be positioned to provide passive load to the generators to maintain generally constant generator load, while allowing for instant access to power as active load increases. Generators may be run at 100% capacity, a maximum efficient capacity, or at a high enough level to allow for a sufficiently rapid increase in power output. At least one parameter of a drilling operation may be utilized to anticipate load demand changes.
Abstract:
A method for coupling a permanent magnet to a rotor body of an electric motor includes providing a rotor body having an outer surface. A mounting hole is formed in the rotor body. A permanent magnet in the form of an annular section is provided. The concave surface of the permanent magnet has a diameter generally equal to the outer diameter of the rotor body. The permanent magnet has a hole formed therein to receive the threaded connector, the hole having a countersink at the convex surface of the permanent magnet. The permanent magnet is positioned on the outer surface of the rotor body such that the hole lines up with the mounting hole, an elastomeric body is positioned in the countersink, and the threaded connector is positioned through the elastomeric body and the hole of the permanent magnet to couple to the rotor body.
Abstract:
A permanent magnet for a permanent magnet electric motor is bonded to a rotor. A hole having a chamfered outer edge is formed in the permanent magnet. A corresponding mounting hole is formed in the body of the rotor. A bolt is threaded through the hole in the permanent magnet and threaded into the mounting hole of the rotor. An O-ring is positioned between the head of the bolt and the permanent magnet. The O-ring may be made of an elastomeric material which may prevent cracking of the permanent magnet as components of the electric motor expand and contract with fluctuations in temperature. A magnet may be held to a rotor by a dovetail or may include a flange to be held to the rotor by a retaining ring.
Abstract:
A power system for an electrical system with highly fluctuating loads is powered by one or more power sources that are slow to react to load changes. The power sources are connected to electrical equipment used on the drill rig which provide active load to the generators. One or more load banks may be positioned to provide passive load to the generators to maintain generally constant generator load, while allowing for instant access to power as active load increases. Generators may be run at 100% capacity, a maximum efficient capacity, or at a high enough level to allow for a sufficiently rapid increase in power output. At least one parameter of a drilling operation may be utilized to anticipate load demand changes.