一种基于深度学习的大豆植株茎秆相关表型自动获取方法

    公开(公告)号:CN119516535A

    公开(公告)日:2025-02-25

    申请号:CN202411329697.7

    申请日:2024-09-24

    Applicant: 长江大学

    Abstract: 本发明涉及一种基于深度学习的大豆植株茎秆相关表型自动获取方法,通过八个步骤,将深度学习和图像处理技术融合使用,针对成熟期大豆整株图像结合大豆植株形态学特征,通过深度学习训练目标检测模型识别茎节,训练语义分割模型提取茎秆区域,结合茎秆区域提取结果优化茎节检测结果,再结合图像二值化处理,设计多路径规划算法对重构的主茎和分枝分别实现茎节定位、排序、计数和茎节间距计算,用最大内切圆法获取主茎和分枝茎粗,实现针对成熟期大豆整株植株茎秆相关表型的自动获取,为育种人员提供海量表型数据。克服了现有人工和传感器检测法及图像处理法采集大豆整株植株表型数据的不足,具有客观、准确,自动、高效率获取表型数据的特点。

Patent Agency Ranking