基于生成对抗网络路面裂缝图像超分辨率重建方法及装置

    公开(公告)号:CN111986079A

    公开(公告)日:2020-11-24

    申请号:CN202010548216.7

    申请日:2020-06-16

    Applicant: 长安大学

    Abstract: 本发明公开了基于生成对抗网络路面裂缝图像超分辨率重建方法及装置,采集高分辨率路面裂缝图像并进行降采样处理,得到相同数量的低分辨率路面裂缝图像;对低分辨率路面裂缝图像与高分辨率路面裂缝图像进行两两配对,并将配对后的路面裂缝图像输入到生成对抗网络中,输出为超分辨率图像集;训练生成对抗网络,优化生成对抗网络参数,获得优化后的生成对抗网络作为图像超分辨率重建模型。本发明采用深度学习方法对路面裂缝图像进行超分辨率重建,提高了图像重建的准确度;通过对SRGAN方法进行改进,能够更加适合所处理的路面裂缝图像,且在重建图像的细节纹理表现上更加自然,可直接用于路面裂缝检测。

    一种路面裂缝图像虚拟增广模型建立及图像虚拟增广方法

    公开(公告)号:CN111861906B

    公开(公告)日:2023-10-31

    申请号:CN202010574126.5

    申请日:2020-06-22

    Applicant: 长安大学

    Abstract: 本发明属于路面裂缝图像处理领域,公开了一种路面裂缝图像虚拟增广模型建立及图像虚拟增广方法。模型建立方法包括如下步骤:步骤1:采集路面裂缝图像,对路面裂缝图像依次进行数据质量提升和图像分割,获得真实路面裂缝图像集;步骤2:建立DCGAN生成对抗网络模型,所述DCGAN生成对抗网络模型包括生成器网络和判别器网络,所述的生成器网络和判别器网络的损失函数后设置有惩罚项;步骤3:获取随机噪声,将随机噪声和步骤1获得的真实路面裂缝图像集输入步骤2获得的DCGAN生成对抗网络模型进行训练,训练完成的模型即为路面裂缝图像虚拟增广模型。本发明有效解决了裂缝图像数据集不足的问题,很好的实现了对裂缝图像数据集的数量和多样性的增广。

    基于路面感知数据智能分类的加载车行驶纠偏方法和系统

    公开(公告)号:CN114898329A

    公开(公告)日:2022-08-12

    申请号:CN202210333395.1

    申请日:2022-03-31

    Applicant: 长安大学

    Abstract: 本发明公开了一种基于路面感知数据智能分类的加载车行驶纠偏方法和系统,所述方法包括:获取来自足尺路面上多个高频传感器的待分类数据;根据足尺路面不同高频传感器数据特征构建自适应阈值,对处于加载过程中的传感器数据进行提取;将获得的多个压力感知数据片段进行可视化转换,获得对应的待分类图像数据;构建DCNN6卷积神经网络并对卷积神经网络进行训练;利用经训练的卷积神经网络模型获得待分类图像数据的分类结果;利用所述分类结果对车辆的驾驶轨迹进行提示。本发明可以有效解决足尺环道中的动态高频传感器数据自动分类问题,为全路域受力分析和把握车辙演变规律提供有力的数据支撑,且分类速度快、精度高,节省人力物力。

    一种基于深度卷积融合神经网络的路面裂缝识别方法

    公开(公告)号:CN110349122A

    公开(公告)日:2019-10-18

    申请号:CN201910497697.0

    申请日:2019-06-10

    Applicant: 长安大学

    Abstract: 本发明提供了一种基于深度卷积融合神经网络的路面裂缝识别方法,包括以下步骤:步骤1,采集N幅路面图像,并对N幅路面图像进行预处理,对预处理后的N幅路面图像进行图像增广,得到M幅路面图像;步骤2,对M幅路面图像进行裂缝类别标注,并将裂缝标注后的M幅路面图像分为训练集、交叉验证集和测试集;步骤3,训练裂缝分类检测;步骤4,训练裂缝分割模型;步骤5,将待识别图像输入裂缝分割模型中,得到待识别图像中裂缝的类别和置信度;再将待识别图像输入至裂缝分割模型,得到裂缝二值图像;步骤6,计算待识别图像中裂缝面积、长度和宽度;步骤7,将待识别图像中裂缝的类别、置信度、坐标、面积、长度和宽度信息绘制到待识别图像上。

    基于路面感知数据智能分类的加载车行驶纠偏方法和系统

    公开(公告)号:CN114898329B

    公开(公告)日:2025-01-10

    申请号:CN202210333395.1

    申请日:2022-03-31

    Applicant: 长安大学

    Abstract: 本发明公开了一种基于路面感知数据智能分类的加载车行驶纠偏方法和系统,所述方法包括:获取来自足尺路面上多个高频传感器的待分类数据;根据足尺路面不同高频传感器数据特征构建自适应阈值,对处于加载过程中的传感器数据进行提取;将获得的多个压力感知数据片段进行可视化转换,获得对应的待分类图像数据;构建DCNN6卷积神经网络并对卷积神经网络进行训练;利用经训练的卷积神经网络模型获得待分类图像数据的分类结果;利用所述分类结果对车辆的驾驶轨迹进行提示。本发明可以有效解决足尺环道中的动态高频传感器数据自动分类问题,为全路域受力分析和把握车辙演变规律提供有力的数据支撑,且分类速度快、精度高,节省人力物力。

    基于峰值聚类高速公路收费数据异常事件检测方法及装置

    公开(公告)号:CN112364910A

    公开(公告)日:2021-02-12

    申请号:CN202011225553.9

    申请日:2020-11-05

    Applicant: 长安大学

    Abstract: 本发明公开了一种基于峰值聚类高速公路收费数据异常事件检测方法及装置,用以解决现有技术中的高速公路异常事件检测方法及装置存在的检测结果不准确、效率不高等问题;本发明提供的基于高速公路收费数据的异常事件检测方法及装置,可以更加全面准确感知高速公路交通运行状况,能够有效挖掘出数据中隐藏的道路拥堵、长时停留、车辆超速、设备故障、系统故障、网络故障、车辆超载和疑似逃费等异常事件。

    基于多因素耦合作用的路面抗滑性能评估方法及装置

    公开(公告)号:CN118350104A

    公开(公告)日:2024-07-16

    申请号:CN202410604531.5

    申请日:2024-05-15

    Applicant: 长安大学

    Abstract: 本发明公开了一种基于多因素耦合作用的路面抗滑性能评估方法及装置,涉及道路交通安全技术领域,解决了现有技术中没有能够兼顾准确和高效的抗滑性能评估方法的问题,该方法包括:获取沥青路面样本集;提取所述样本集中每个样本的二维特征和三维特征,得到所述样本集的多模态特征数据集;构建评估模型,并结合所述多模态特征数据集对所述评估模型进行训练,得到训练好的评估模型;其中,评估模型包括:基学习器、先验分布的概率函数和评分函数;利用所述训练好的评估模型对沥青路面进行抗滑性能评估;该方法实现了以提升路面抗滑性能评估的效率和准确度,为道路行驶安全保障和路面养护决策提供良好的数据基础。

Patent Agency Ranking