一种基于卷积神经网络的多尺度医学图像融合方法

    公开(公告)号:CN112163994A

    公开(公告)日:2021-01-01

    申请号:CN202010904222.1

    申请日:2020-09-01

    Inventor: 李伟生 黄渝萍

    Abstract: 本发明请求保护一种基于卷积神经网络的多尺度医学图像融合方法,包括步骤:S1将配准后的解剖行图像和功能型图像进行局部拉普拉斯滤波处理,分解为细节增强的多尺度近似图像和残差图像;S2将配准后的解剖型图像输入深度卷积神经网络中提取超分辨率解剖型图像;S3将超分辨率解剖型图像和功能型图像输入双分支卷积神经网络中进行卷积,得到一个权重图,结合多尺度近似图像和残差图像融合为多尺度融合图像;S4采用局部拉普拉斯的逆运算对多尺度融合图像进行重构。本发明有效解决了医学图像融合方法在伪彩图像和灰度图像融合时的颜色失真以及信息丢失等问题。

    一种基于卷积神经网络的多尺度医学图像融合方法

    公开(公告)号:CN112163994B

    公开(公告)日:2022-07-01

    申请号:CN202010904222.1

    申请日:2020-09-01

    Inventor: 李伟生 黄渝萍

    Abstract: 本发明请求保护一种基于卷积神经网络的多尺度医学图像融合方法,包括步骤:S1将配准后的解剖行图像和功能型图像进行局部拉普拉斯滤波处理,分解为细节增强的多尺度近似图像和残差图像;S2将配准后的解剖型图像输入深度卷积神经网络中提取超分辨率解剖型图像;S3将超分辨率解剖型图像和功能型图像输入双分支卷积神经网络中进行卷积,得到一个权重图,结合多尺度近似图像和残差图像融合为多尺度融合图像;S4采用局部拉普拉斯的逆运算对多尺度融合图像进行重构。本发明有效解决了医学图像融合方法在伪彩图像和灰度图像融合时的颜色失真以及信息丢失等问题。

Patent Agency Ranking