一种基于深度学习的医用胶片上文字信息的识别方法

    公开(公告)号:CN113392844A

    公开(公告)日:2021-09-14

    申请号:CN202110661076.9

    申请日:2021-06-15

    Abstract: 本发明涉及一种基于深度学习的医用胶片上文字信息的识别方法,属于医学影像处理技术领域。该方法包括:S1:将待识别文字信息的胶片图像输入到特征提取网络,获取含有文字多尺度的特征图;S2:将步骤S1获取的特征图输入到多方向窗口提取网络中,得到建议框;S3:利用改进的建议框旋转模块处理步骤S2的建议框,得到文本检测结果;S4:将步骤S3的文本检测结果输入到编解码文字识别模块中,得到胶片上对应的文字识别结果。本发明实现了医用胶片上文字信息自动识别,直接输出医用胶片上对应的中英文文字信息,无需人为修正和验证,效率高,准确率也有保障。

    一种基于无监督学习的低剂量CT图像恢复方法及系统

    公开(公告)号:CN114708352A

    公开(公告)日:2022-07-05

    申请号:CN202210424881.4

    申请日:2022-04-22

    Abstract: 本发明属于医学图像处理技术领域,涉及一种基于无监督学习的低剂量CT图像恢复方法及系统;包括获取低剂量CT图像并采用全变分模型进行特征分解,得到基础层图像和细节层图像;对基础层图像下采样得到内容特征图像和潜在纹理层图像,分别对内容特征层图像和细节层图像进行图像增强和降噪处理,得到基础层增强图像和细节层降噪图像;将潜在纹理层图像、基础层增强图像和细节层降噪图像分段融合得到低剂量CT恢复图像;本发明将低剂量CT图像进行解耦,对低频区进行对比度增强,对高频区进行去噪,提高了整体图像质量,减少医生误诊率。

Patent Agency Ranking