一种基于公平性增强的联邦学习方法

    公开(公告)号:CN119962635A

    公开(公告)日:2025-05-09

    申请号:CN202510058630.2

    申请日:2025-01-15

    Abstract: 本发明涉及联邦学习领域,特别涉及一种基于公平性增强的联邦学习方法,包括优化样本选择和资源分配以提升模型的公平性;通过Gower相似性度量和层次聚类对数据进行分层处理,确保不同层次数据的代表性;结合参数化损失权重的动态权重调整策略,实时优化数据层的敏感性,动态平衡不同数据层在训练中的贡献,完成权重分配优化;构建基于自编码器的加权聚合模型,利用自编码器对数据进行异常检测,结合公平性指标优化全局模型的更新;本发明能够有效减少本地模型偏差,并在异构数据环境下显著提升联邦学习的公平性和模型精度。

Patent Agency Ranking