-
公开(公告)号:CN117710252A
公开(公告)日:2024-03-15
申请号:CN202311465117.2
申请日:2023-11-06
Applicant: 重庆邮电大学
IPC: G06T5/77 , G06T5/70 , G06T7/41 , G06V10/54 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/0475 , G06N3/094
Abstract: 本发明请求保护一种基于细化边缘语义的人脸复原方法。首先通过构建身份‑纹理数据库,复原时检索同一人的面部纹理以实现复原人脸身份的强一致性;然后通过细化边缘语义机制明确退化人脸的大致轮廓和组件范围以近似先验信息,摒弃获取先验信息获取的时间,并通过特征选择模块中的双分支结构,进一步对细化边缘特征进行选择以实现复原人脸图像的清晰边缘。最后借助细节补充模块,动态的融合检索到的纹理,使得复原结果更加的真实。在实际场景中,通过平滑复原人脸边缘杜绝复原人脸和背景的明显差异,实现更加自然的图像复原效果。该方法具有可靠的纹理生成效果和优秀的推理速度,部署所需要的资源和难度较低,并为超高清人脸场景提供了一种思路。
-
公开(公告)号:CN116758632A
公开(公告)日:2023-09-15
申请号:CN202310704051.1
申请日:2023-06-14
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种基于区域扩增和位置信息交互的视频行人重识别方法,属于图像检索方法。包括以下步骤:数据切片及预处理;然后使用通道注意模块进行通道权值重建;接着提取前帧的显著特征,进一步将后帧的关注区域从显著到全面进行过渡;然后利用位置信息交互(LII)模块促进位置信息跨所有帧交互,以实现帧之间的相互增强;最后根据模型设计损失函数并进行训练,值得注意的是,在测试阶段,去除LII模块以提升推理速度。本发明提出了轻量化的视频行人重识别模型,在多个公共基准上展现了强大的性能和泛化能力。
-
公开(公告)号:CN118052830B
公开(公告)日:2024-12-10
申请号:CN202410015147.1
申请日:2024-01-04
Applicant: 重庆邮电大学
IPC: G06T7/11 , G06T7/00 , G06T7/90 , G06T5/70 , G06T7/13 , G06V10/82 , G06V10/80 , G06N3/0464 , G06N3/08
Abstract: 本发明请求保护一种基于隐式提示的多病变视网膜分割方法,主要包含三色域特征增强、调制模块、隐式提示模块和提示结合模块。该方法通过转换色彩空间并选取其中分量进行组合并结合高斯模糊,实现数据增强。为减少病变对细小血管的影响,调制模块采用上下文语义差异较小的临近跳跃连接实现自底向上的调制,实现由粗到细的特征融合。为针对病变进行有效分割,隐式提示模块利用提示信息结合编码的中层特征进行自适应学习病变类型,提示结合模块在解码阶段结合提示信息与跳跃连接实现对各种病变的可靠分割。以上措施的实施显著提升了视网膜血管的分割精度,强化了网络在处理病变背景下形态差异较大的血管的能力,提高了末端毛细血管分割的准确性。
-
公开(公告)号:CN117689669B
公开(公告)日:2024-08-27
申请号:CN202311542338.5
申请日:2023-11-17
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种基于结构自适应上下文敏感的视网膜血管分割方法。首先对数据集进行灰度化、归一化、对比度受限自适应直方图均衡、伽马校正等预处理;然后,对训练集进行图片尺寸分割以完成数据增强;接着,搭建由收缩路径和扩张路径组成的全卷积神经网络架构;最后,采用提出的结构自适应层替代卷积层来替代普通卷积、跳接层引入提出的空洞残差路径以及解码器中添加自适应特征融合模块,并引入多尺度深度监督机制,得到结构自适应上下文敏感网络,并将测试数据输入到该网络中快速测试完成图像分割。本发明有效地提高了视网膜血管的分割精度,且结构合理,提高了网络在复杂背景下处理形态差异较大的血管的能力以及末端毛细血管分割的准确性。
-
公开(公告)号:CN118052830A
公开(公告)日:2024-05-17
申请号:CN202410015147.1
申请日:2024-01-04
Applicant: 重庆邮电大学
IPC: G06T7/11 , G06T7/00 , G06T7/90 , G06T5/70 , G06T7/13 , G06V10/82 , G06V10/80 , G06N3/0464 , G06N3/08
Abstract: 本发明请求保护一种基于隐式提示的多病变视网膜分割方法,主要包含三色域特征增强、调制模块、隐式提示模块和提示结合模块。该方法通过转换色彩空间并选取其中分量进行组合并结合高斯模糊,实现数据增强。为减少病变对细小血管的影响,调制模块采用上下文语义差异较小的临近跳跃连接实现自底向上的调制,实现由粗到细的特征融合。为针对病变进行有效分割,隐式提示模块利用提示信息结合编码的中层特征进行自适应学习病变类型,提示结合模块在解码阶段结合提示信息与跳跃连接实现对各种病变的可靠分割。以上措施的实施显著提升了视网膜血管的分割精度,强化了网络在处理病变背景下形态差异较大的血管的能力,提高了末端毛细血管分割的准确性。
-
公开(公告)号:CN117689669A
公开(公告)日:2024-03-12
申请号:CN202311542338.5
申请日:2023-11-17
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种基于结构自适应上下文敏感的视网膜血管分割方法。首先对数据集进行灰度化、归一化、对比度受限自适应直方图均衡、伽马校正等预处理;然后,对训练集进行图片尺寸分割以完成数据增强;接着,搭建由收缩路径和扩张路径组成的全卷积神经网络架构;最后,采用提出的结构自适应层替代卷积层来替代普通卷积、跳接层引入提出的空洞残差路径以及解码器中添加自适应特征融合模块,并引入多尺度深度监督机制,得到结构自适应上下文敏感网络,并将测试数据输入到该网络中快速测试完成图像分割。本发明有效地提高了视网膜血管的分割精度,且结构合理,提高了网络在复杂背景下处理形态差异较大的血管的能力以及末端毛细血管分割的准确性。
-
-
-
-
-