-
公开(公告)号:CN105376260B
公开(公告)日:2018-12-28
申请号:CN201510958055.8
申请日:2015-12-18
Applicant: 重庆邮电大学
IPC: H04L29/06
Abstract: 本发明请求保护一种基于密度峰值聚类的网络异常流量监测系统,包括:特征选择模块:通过关键字源IP地址在单位时间一分钟内聚合而选择新特征空间模块;子空间映射模块:将高维特征空间映射到多个低维空间上形成多个新特征空间数据;异常权重赋值模块:基于密度和距离的距离权重赋值方法,计算出每个子空间中的每个数据点的异常权重;异常权值整合:计算出的所有子空间中的异常权值进行整合,得到原空间数据点的最终异常权值;异常权值阈值确定模块:将最终异常权值逆序排序后,取斜率突变处为检测阈值;异常流量检测模块:所有异常权值大于阈值的网络流量检测为异常流量,小于为正常流量。本发明能适应多样的网络环境,并提高检测精度和准确率。
-
公开(公告)号:CN105376260A
公开(公告)日:2016-03-02
申请号:CN201510958055.8
申请日:2015-12-18
Applicant: 重庆邮电大学
IPC: H04L29/06
CPC classification number: H04L63/1408 , H04L63/1425 , H04L63/1466
Abstract: 本发明请求保护一种基于密度峰值聚类的网络异常流量监测系统,包括:特征选择模块:通过关键字源IP地址在单位时间一分钟内聚合而选择新特征空间模块;子空间映射模块:将高维特征空间映射到多个低维空间上形成多个新特征空间数据;异常权重赋值模块:基于密度和距离的距离权重赋值方法,计算出每个子空间中的每个数据点的异常权重;异常权值整合:计算出的所有子空间中的异常权值进行整合,得到原空间数据点的最终异常权值;异常权值阈值确定模块:将最终异常权值逆序排序后,取斜率突变处为检测阈值;异常流量检测模块:所有异常权值大于阈值的网络流量检测为异常流量,小于为正常流量。本发明能适应多样的网络环境,并提高检测精度和准确率。
-