一种基于时空2D卷积神经网络的航拍视频分析方法

    公开(公告)号:CN113269054A

    公开(公告)日:2021-08-17

    申请号:CN202110485470.1

    申请日:2021-04-30

    Abstract: 本发明属于遥感影像智能化分析领域,具体涉及一种基于时空2D卷积神经网络的航拍视频分析方法,该方法包括实时获取航拍视频数据,对获取的航拍视频数据进行预处理;将预处理后的航拍视频数据输入到训练好的航拍视频识别模型中进行识别分析处理;对识别结果进行统计分析;所述航拍视频识别模型包括2D卷积神经网络、长时序特征提取模块LTFE、短期运动特征提取模块SMFE以及特征融合模块FFM,所述长时序特征提取模块LTFE、短期运动特征提取模块SMFE和特征融合模块FFM设置在2D卷积神经网络中;本发明采用改进的2D卷积神经网络模型并结合长时序特征提取模块、短期运动特征提取模块和特征融合模块,提高了计算效率以及航拍视频的识别准确率。

    一种基于时空2D卷积神经网络的航拍视频分析方法

    公开(公告)号:CN113269054B

    公开(公告)日:2022-06-10

    申请号:CN202110485470.1

    申请日:2021-04-30

    Abstract: 本发明属于遥感影像智能化分析领域,具体涉及一种基于时空2D卷积神经网络的航拍视频分析方法,该方法包括实时获取航拍视频数据,对获取的航拍视频数据进行预处理;将预处理后的航拍视频数据输入到训练好的航拍视频识别模型中进行识别分析处理;对识别结果进行统计分析;所述航拍视频识别模型包括2D卷积神经网络、长时序特征提取模块LTFE、短期运动特征提取模块SMFE以及特征融合模块FFM,所述长时序特征提取模块LTFE、短期运动特征提取模块SMFE和特征融合模块FFM设置在2D卷积神经网络中;本发明采用改进的2D卷积神经网络模型并结合长时序特征提取模块、短期运动特征提取模块和特征融合模块,提高了计算效率以及航拍视频的识别准确率。

Patent Agency Ranking