-
公开(公告)号:CN105915299B
公开(公告)日:2018-08-14
申请号:CN201610149087.8
申请日:2016-03-16
Applicant: 重庆邮电大学
IPC: H04B17/373 , H04B17/391
Abstract: 本发明请求保护一种ISM(2.4GHz)频段中基于时频二维LMBP神经网络的频谱预测方法,包括:ISM频段相关性的计算,通过对ISM频段的实测、量化和相关性分析得到ISM频段时域和频域的相关性;第二步:基于ISM频段时频相关性,构建时频二维LMBP神经网络来实现ISM频段的预测;第三步:以实测数据作为神经网络的时频输入向量和目标向量,以牛顿法学习规则实现时频二维LMBP神经网络的迭代训练,得到由神经网络节点间权值w和阈值b构成的参数向量u的最优解;第四步:以训练完成的二维LMBP神经网络来实现ISM频段的频谱预测。计算ISM频段时频相关性的基础上,通过时频二维LMBP神经网络实现ISM频段的频谱预测,该方法同时域LMBP神经网络和Markov算法相比具有预测精度高,训练收敛时间短的优点。
-
公开(公告)号:CN105915299A
公开(公告)日:2016-08-31
申请号:CN201610149087.8
申请日:2016-03-16
Applicant: 重庆邮电大学
IPC: H04B17/373 , H04B17/391
CPC classification number: H04B17/373 , G06N3/02 , H04B17/3913
Abstract: 本发明请求保护一种ISM(2.4GHz)频段中基于时频二维LMBP神经网络的频谱预测方法,包括:ISM频段相关性的计算,通过对ISM频段的实测、量化和相关性分析得到ISM频段时域和频域的相关性;第二步:基于ISM频段时频相关性,构建时频二维LMBP神经网络来实现ISM频段的预测;第三步:以实测数据作为神经网络的时频输入向量和目标向量,以牛顿法学习规则实现时频二维LMBP神经网络的迭代训练,得到由神经网络节点间权值w和阈值b构成的参数向量u的最优解;第四步:以训练完成的二维LMBP神经网络来实现ISM频段的频谱预测。计算ISM频段时频相关性的基础上,通过时频二维LMBP神经网络实现ISM频段的频谱预测,该方法同时域LMBP神经网络和Markov算法相比具有预测精度高,训练收敛时间短的优点。
-