-
公开(公告)号:CN114739659B
公开(公告)日:2025-04-18
申请号:CN202210456304.3
申请日:2022-04-28
Applicant: 重庆邮电大学
IPC: G01M13/02 , G06F18/2415 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及齿轮箱状态监测技术,具体为基于特征粒度对齐的变工况下齿轮箱故障诊断方法及装置。所述方法包括采集不同工况下的轴承振动数据并预处理;利用特征提取器分别提取源域数据和目标域数据特征,并计算得到两种领域之间的CMMD和FMMD,以及CFMMD;利用分类器生成源域数据的预测标签;计算出其原始标签与预测标签之间的预测损失,根据CFMMD计算出距离损失;以最小化损失和为目标函数,训练深度卷积神经网络模型;利用训练后的特征提取器提取出目标域数据特征,利用训练后的分类器对目标域数据特征进行处理,预测得到目标域数据的故障类型。本发明提高了旋转机械变工况的故障诊断效率和准确率。
-
公开(公告)号:CN114739659A
公开(公告)日:2022-07-12
申请号:CN202210456304.3
申请日:2022-04-28
Applicant: 重庆邮电大学
Abstract: 本发明涉及齿轮箱状态监测技术,具体为基于特征粒度对齐的变工况下齿轮箱故障诊断方法及装置。所述方法包括采集不同工况下的轴承振动数据并预处理;利用特征提取器分别提取源域数据和目标域数据特征,并计算得到两种领域之间的CMMD和FMMD,以及CFMMD;利用分类器生成源域数据的预测标签;计算出其原始标签与预测标签之间的预测损失,根据CFMMD计算出距离损失;以最小化损失和为目标函数,训练深度卷积神经网络模型;利用训练后的特征提取器提取出目标域数据特征,利用训练后的分类器对目标域数据特征进行处理,预测得到目标域数据的故障类型。本发明提高了旋转机械变工况的故障诊断效率和准确率。
-