感知对抗生成网络驱动的锂电池故障数据生成方法

    公开(公告)号:CN110414604A

    公开(公告)日:2019-11-05

    申请号:CN201910695455.2

    申请日:2019-07-30

    Abstract: 本发明涉及感知对抗生成网络驱动的锂电池故障数据生成方法,属于电池技术领域。在本发明中以外部电气参数表示的实测标注故障小样本数据为对象,考虑随机变量注入小样本故障数据的感知残差效应。以感知生成网络为对象,构建适应故障小样本数据分布的深度神经网络结构,及其感知损失函数设计策略。以对抗鉴别网络为对象,构建反映真实故障数据分布的网络结构,及其对抗损失函数构建范式,理解故障数据生成模型中真实分布与感知分布的误差传播关系及其可能的博弈模式,生成与真实故障锂电池分布接近的数据。该方法解决了目前有效可用的动力锂电池故障数据稀缺问题,提高了神经网络的训练效果,提高锂电池故障诊断模型的泛化能力弱与表达能力。

    一种混合卷积神经网络驱动的锂电池多类故障诊断建模方法

    公开(公告)号:CN110308397B

    公开(公告)日:2021-04-02

    申请号:CN201910695409.2

    申请日:2019-07-30

    Abstract: 本发明涉及一种混合卷积神经网络驱动的锂电池多类故障诊断建模方法,属于电池技术领域。利用分数阶傅里叶变换获得实测的和筛选的锂电池精细化故障频谱,构成用于锂电池故障诊断的混合大数据标注样本;设计面向混合锂电池故障样本的全局卷积神经网络,以及分别针对实测的和筛选的锂电池故障数据的局部卷积神经网络,构成混合卷积神经网络锂电池故障诊断模型;通过对卷积神经网络中的全局与局部锂电池故障特征进行学习,并采用全连接分类映射,实现锂电池故障的多分类与定位。该方法提高了电池管理系统可靠性和安全性,减轻了参数众多引起的计算复杂性,解决了多物理耦合诊断模型在实际应用中仅能针对某一类锂电池故障诊断任务的问题。

    一种归一化互信息准则约束的锂电池故障数据筛选方法

    公开(公告)号:CN110412467A

    公开(公告)日:2019-11-05

    申请号:CN201910696529.4

    申请日:2019-07-30

    Abstract: 本发明涉及一种归一化互信息准则约束的锂电池故障数据筛选方法,属于锂电池故障诊断领域。该方法包括以下步骤:S1:采集数据:通过传感器采集真实锂电池故障数据,使用感知生成网络生成候选锂电池故障数据;S2:采用分数阶傅里叶变换提取锂电池故障数据的特征;S3:采用归一化互信息作为锂电池故障数据的筛选测度,计算真实锂电池故障特征矩阵A与候选锂电池故障特征矩阵B之间的归一化互信息;S4:利用故障诊断实验选取筛选阈值。本发明能够使筛选的锂电池故障数据真实有效,同时还能提高筛选速度,为故障诊断的深度学习方法提供了高质量的数据保障。

    一个基于非下采样剪切变换的新型图像融合方法

    公开(公告)号:CN109801248A

    公开(公告)日:2019-05-24

    申请号:CN201811555330.1

    申请日:2018-12-18

    Abstract: 一个基于非下采样剪切变换的新型图像融合方法,包括以下步骤:步骤1:输入源图像A和源图像B,并将所述源图像A和源图像B进行L级NSST分解,分别得到源图像A和源图像B的低频分量和高频分量;步骤2:采用加权局部能量加权和和基于八邻域的改进拉普拉斯算子规则融合低频分量;步骤3:计算分别得到源图像A和源图像B两者高频分量的修正拉普拉斯和和修正拉普拉斯,并使用和修正拉普拉斯最大值融合高频分量;步骤4:使用NSST逆变换将高频融合分量和低频融合分量重构得到最终的融合图像。采用非下采样剪切波将原图像分解为高频和低频,NSST的多尺度和多方向特性能有效减少吉布斯型振铃现象的发生,并且可获得源图像更多的空间细节和结构信息。

    一种归一化互信息准则约束的锂电池故障数据筛选方法

    公开(公告)号:CN110412467B

    公开(公告)日:2021-07-23

    申请号:CN201910696529.4

    申请日:2019-07-30

    Abstract: 本发明涉及一种归一化互信息准则约束的锂电池故障数据筛选方法,属于锂电池故障诊断领域。该方法包括以下步骤:S1:采集数据:通过传感器采集真实锂电池故障数据,使用感知生成网络生成候选锂电池故障数据;S2:采用分数阶傅里叶变换提取锂电池故障数据的特征;S3:采用归一化互信息作为锂电池故障数据的筛选测度,计算真实锂电池故障特征矩阵A与候选锂电池故障特征矩阵B之间的归一化互信息;S4:利用故障诊断实验选取筛选阈值。本发明能够使筛选的锂电池故障数据真实有效,同时还能提高筛选速度,为故障诊断的深度学习方法提供了高质量的数据保障。

    一种面向硬件移植的锂电池深度诊断模型压缩算法

    公开(公告)号:CN110399975A

    公开(公告)日:2019-11-01

    申请号:CN201910696488.9

    申请日:2019-07-30

    Abstract: 本发明涉及一种面向硬件移植的锂电池深度诊断模型的模型压缩算法,属于深度神经网络模型压缩领域,包括以下步骤:S1:利用阈值学习方法获取锂电池故障诊断模型中的混合卷积神经网络重要权值,在不损失精度的情况下减少网络规模;S2:采用数值聚合方式量化强制实现权值共享,使用压缩稀疏格式存储有效的共享权值编码与和索引;S3:通过顶部标量量化和底部质心微调进行权值分配与哈夫曼编码,使用可变长度码编码权重与索引,进一步减少网络所需要的存储空间。本发明采用的修剪,量化和霍夫曼编码的三级流水线方式,在每一级流水线中,都能够在不损失精度的前提下,一步一步的删除冗余权重,大大压缩网络模型。

    一种混合卷积神经网络驱动的锂电池多类故障诊断建模方法

    公开(公告)号:CN110308397A

    公开(公告)日:2019-10-08

    申请号:CN201910695409.2

    申请日:2019-07-30

    Abstract: 本发明涉及一种混合卷积神经网络驱动的锂电池多类故障诊断建模方法,属于电池技术领域。利用分数阶傅里叶变换获得实测的和筛选的锂电池精细化故障频谱,构成用于锂电池故障诊断的混合大数据标注样本;设计面向混合锂电池故障样本的全局卷积神经网络,以及分别针对实测的和筛选的锂电池故障数据的局部卷积神经网络,构成混合卷积神经网络锂电池故障诊断模型;通过对卷积神经网络中的全局与局部锂电池故障特征进行学习,并采用全连接分类映射,实现锂电池故障的多分类与定位。该方法提高了电池管理系统可靠性和安全性,减轻了参数众多引起的计算复杂性,解决了多物理耦合诊断模型在实际应用中仅能针对某一类锂电池故障诊断任务的问题。

Patent Agency Ranking