一种基于大数据的软件缺陷类别预测方法

    公开(公告)号:CN118965105A

    公开(公告)日:2024-11-15

    申请号:CN202411001090.6

    申请日:2024-07-25

    Abstract: 本发明属于深度学习领域,特别涉及一种基于大数据的软件缺陷类别预测方法,包括从不同源域中采集软件的运行数据,对数据进行预处理操作;计算每个源域数据的权重,同时将预处理后的数据利用特征完全提取技术提取每个源域的数据特征;使用注意力机制对不同源域的特征加权得到第一融合特征,将不同域数据和其对应的注意力权重输入通过Flort模板融合得到第二融合特征;将第一融合特征和第二融合特征进行最后的融合得到最终融合特征,将最终融合特征作为多源域融合分类器模型的输入;多源域融合分类器模型考虑源域与目标源、源域与源域之间的关系对预测输入的特征是否存在目标域中的缺陷类型。本发明提高了软件缺陷类别预测的准确性和稳定性。

    一种基于用户评论的APP软件缺陷识别方法

    公开(公告)号:CN118966167A

    公开(公告)日:2024-11-15

    申请号:CN202410943682.3

    申请日:2024-07-15

    Abstract: 本发明属于自然语言处理技术领域,具体涉及一种基于用户评论的APP软件缺陷识别方法;该方法包括:获取用户对软件的评论数据并对其进行预处理,得到预处理好的用户评论数据;计算用户评论数据中所有关键词的重要分数;选择重要分数最高的n个关键词,并根据n个关键词和用户评论数据构建评论的多维度特征;采用训练好的自适应多维特征动态网络对多维度特征进行处理,得到APP软件缺陷识别结果;本发明不仅可以提高识别软件问题的效率,而且还可以捕捉到传统测试可能遗漏的细微缺陷,从而为软件开发者提供更全面的质量保证工具。

    一种基于大数据的智能政务问答系统

    公开(公告)号:CN118410132A

    公开(公告)日:2024-07-30

    申请号:CN202310362407.8

    申请日:2023-04-07

    Abstract: 本发明属于自然语言处理领域,具体涉及一种基于大数据的智能政务问答系统,包括:文本解析模块、特征提取模块、信息交互模块、答案预测模块;文本解析模块计算用户的问题Q与文档之间的相关性,选取相关性最高的前K个文档作为召回文档P;特征提取模块提取召回文档P与用户问题Q之间的依存关系特征;所述信息交互模块将召回文档P、用户问题Q以及依存关系特征进行多重注意力信息交互,得到最终的文本向量表示;所述答案预测模块将最终的文本向量表示通过全连接层来预测最终答案的起止位置。本发明通过融入依存关系特征,深入挖掘问题与文档中答案的联系,从而提高了问答系统中标准答案的定位,提升了用户体验。

    一种基于大数据的软件缺陷类别预测方法

    公开(公告)号:CN118965105B

    公开(公告)日:2025-05-13

    申请号:CN202411001090.6

    申请日:2024-07-25

    Abstract: 本发明属于深度学习领域,特别涉及一种基于大数据的软件缺陷类别预测方法,包括从不同源域中采集软件的运行数据,对数据进行预处理操作;计算每个源域数据的权重,同时将预处理后的数据利用特征完全提取技术提取每个源域的数据特征;使用注意力机制对不同源域的特征加权得到第一融合特征,将不同域数据和其对应的注意力权重输入通过Flort模板融合得到第二融合特征;将第一融合特征和第二融合特征进行最后的融合得到最终融合特征,将最终融合特征作为多源域融合分类器模型的输入;多源域融合分类器模型考虑源域与目标源、源域与源域之间的关系对预测输入的特征是否存在目标域中的缺陷类型。本发明提高了软件缺陷类别预测的准确性和稳定性。

    一种基于大数据的智能政务问答系统

    公开(公告)号:CN118410132B

    公开(公告)日:2024-12-06

    申请号:CN202310362407.8

    申请日:2023-04-07

    Abstract: 本发明属于自然语言处理领域,具体涉及一种基于大数据的智能政务问答系统,包括:文本解析模块、特征提取模块、信息交互模块、答案预测模块;文本解析模块计算用户的问题Q与文档之间的相关性,选取相关性最高的前K个文档作为召回文档P;特征提取模块提取召回文档P与用户问题Q之间的依存关系特征;所述信息交互模块将召回文档P、用户问题Q以及依存关系特征进行多重注意力信息交互,得到最终的文本向量表示;所述答案预测模块将最终的文本向量表示通过全连接层来预测最终答案的起止位置。本发明通过融入依存关系特征,深入挖掘问题与文档中答案的联系,从而提高了问答系统中标准答案的定位,提升了用户体验。

Patent Agency Ranking