-
公开(公告)号:CN119963897A
公开(公告)日:2025-05-09
申请号:CN202510023170.X
申请日:2025-01-07
Applicant: 重庆邮电大学
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明属于人工智能领域,特别涉及一种基于局部描述符的三原型矫正网络少样本遥感场景分类方法,包括下载遥感数据集并根据遥感场景图像数据集中遥感场景图像的类别将遥感场景图像数据集划分为训练集、验证集;建立基于局部描述符的三原型矫正网络少样本遥感场景分类模型;利用基于任务的元学习训练策略对基于局部描述符的三原型矫正网络少样本遥感场景分类模型进行元训练,在训练的同时,通过验证任务对基于局部描述符的三原型矫正网络少样本遥感场景分类模型进行元验证,保存性能最佳的模型;利用性能最佳的模型对遥感图像进行分类。本发明可以有效缓解单原型网络对无关背景信息过度使用、无法有效捕获场景图像类特征的问题。