一种基于卷积神经网络的数字信号调制分类方法

    公开(公告)号:CN108764077B

    公开(公告)日:2021-03-19

    申请号:CN201810462767.4

    申请日:2018-05-15

    Abstract: 本发明请求保护一种基于卷积神经网络的信号调制分类方法,涉及信号调制分类领域。该方法的步骤为:1、同时利用平滑伪Winger‑Ville分布和Born‑Jordan分布,将接收到的信号转换成时频分布图;2、由于不同调制信号的时频图像不同,因此利用卷积神经网络自动提取这两种时频分布图的特征;3、利用多模融合模型将这些不同的时频图像特征进行融合;4、利用多层感知机完成信号的分类任务。本发明提出的基于卷积神经网络的信号调制分类方法,相对于传统的调制分类方法,利用了卷积神经网络自动提取特征,提高了信号在低信噪比下的识别性能。

    一种基于卷积神经网络的数字信号调制分类方法

    公开(公告)号:CN108764077A

    公开(公告)日:2018-11-06

    申请号:CN201810462767.4

    申请日:2018-05-15

    CPC classification number: G06K9/00536 G06K9/6288 G06N3/0454

    Abstract: 本发明请求保护一种基于卷积神经网络的信号调制分类方法,涉及信号调制分类领域。该方法的步骤为:1、同时利用平滑伪Winger‑Ville分布和Born‑Jordan分布,将接收到的信号转换成时频分布图;2、由于不同调制信号的时频图像不同,因此利用卷积神经网络自动提取这两种时频分布图的特征;3、利用多模融合模型将这些不同的时频图像特征进行融合;4、利用多层感知机完成信号的分类任务。本发明提出的基于卷积神经网络的信号调制分类方法,相对于传统的调制分类方法,利用了卷积神经网络自动提取特征,提高了信号在低信噪比下的识别性能。

Patent Agency Ranking