-
公开(公告)号:CN108764077B
公开(公告)日:2021-03-19
申请号:CN201810462767.4
申请日:2018-05-15
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种基于卷积神经网络的信号调制分类方法,涉及信号调制分类领域。该方法的步骤为:1、同时利用平滑伪Winger‑Ville分布和Born‑Jordan分布,将接收到的信号转换成时频分布图;2、由于不同调制信号的时频图像不同,因此利用卷积神经网络自动提取这两种时频分布图的特征;3、利用多模融合模型将这些不同的时频图像特征进行融合;4、利用多层感知机完成信号的分类任务。本发明提出的基于卷积神经网络的信号调制分类方法,相对于传统的调制分类方法,利用了卷积神经网络自动提取特征,提高了信号在低信噪比下的识别性能。
-
公开(公告)号:CN108764077A
公开(公告)日:2018-11-06
申请号:CN201810462767.4
申请日:2018-05-15
Applicant: 重庆邮电大学
CPC classification number: G06K9/00536 , G06K9/6288 , G06N3/0454
Abstract: 本发明请求保护一种基于卷积神经网络的信号调制分类方法,涉及信号调制分类领域。该方法的步骤为:1、同时利用平滑伪Winger‑Ville分布和Born‑Jordan分布,将接收到的信号转换成时频分布图;2、由于不同调制信号的时频图像不同,因此利用卷积神经网络自动提取这两种时频分布图的特征;3、利用多模融合模型将这些不同的时频图像特征进行融合;4、利用多层感知机完成信号的分类任务。本发明提出的基于卷积神经网络的信号调制分类方法,相对于传统的调制分类方法,利用了卷积神经网络自动提取特征,提高了信号在低信噪比下的识别性能。
-