一种基于神经网络常微分方程的锂电池健康状态估计方法

    公开(公告)号:CN114545279A

    公开(公告)日:2022-05-27

    申请号:CN202210175767.2

    申请日:2022-02-24

    Abstract: 本发明涉及锂电池健康状态评估技术领域,公开了一种基于神经网络常微分方程的锂电池健康状态估计方法,包括如下步骤:步骤1、对收集到的锂电池数据集进行预处理得到原始数据集;步骤2、将所述原始数据集分类成训练数据集和测试数据集;步骤3、将所述训练数据集输入至通过元学习剪枝后得到的轻量化ODE网络,对所述轻量化ODE网络进行训练得到锂电池的预测容量,并通过所述测试数据集对训练后的轻量化ODE网络进行测试。本发明将元学习剪枝(Meta‑pruning)应用在ODE网络中,简化网络结构并减少网络参数量,达到进一步精简轻量化的ODE网络的效果,并提高神经网络预测锂电池SOH的精度。

    一种基于神经网络常微分方程的锂电池健康状态估计方法

    公开(公告)号:CN114545279B

    公开(公告)日:2024-09-06

    申请号:CN202210175767.2

    申请日:2022-02-24

    Abstract: 本发明涉及锂电池健康状态评估技术领域,公开了一种基于神经网络常微分方程的锂电池健康状态估计方法,包括如下步骤:步骤1、对收集到的锂电池数据集进行预处理得到原始数据集;步骤2、将所述原始数据集分类成训练数据集和测试数据集;步骤3、将所述训练数据集输入至通过元学习剪枝后得到的轻量化ODE网络,对所述轻量化ODE网络进行训练得到锂电池的预测容量,并通过所述测试数据集对训练后的轻量化ODE网络进行测试。本发明将元学习剪枝(Meta‑pruning)应用在ODE网络中,简化网络结构并减少网络参数量,达到进一步精简轻量化的ODE网络的效果,并提高神经网络预测锂电池SOH的精度。

Patent Agency Ranking