-
公开(公告)号:CN117747125B
公开(公告)日:2024-11-15
申请号:CN202311778674.X
申请日:2023-12-22
Applicant: 重庆邮电大学
IPC: G16H50/70 , G06F16/36 , G06N3/0464
Abstract: 本发明涉及医疗领域和数据挖掘技术领域,特别涉及一种利用疾病知识图谱发现疾病‑症状关联关系的方法,包括将疾病知识图谱分解得到疾病和症状相关的二分网络,并以邻接矩阵的形式保存;根据二分网络计算疾病节点和症状节点的相似性矩阵,并将其融合为一个综合疾病相似性矩阵和一个综合症状相似性矩阵;构建图自编码器提取得到节点的非线性表示;使用非负矩阵分解提取节点的线性表示;将线性表示和非线性表示结合,通过全连接神经网络进行疾病‑症状关联预测;本发明在相似性网络计算阶段提出了一种更全面且有效的相似性网络计算方法,将图结构上下文信息与节点序列信息相结合,获得更可靠的相似性网络。
-
公开(公告)号:CN117747125A
公开(公告)日:2024-03-22
申请号:CN202311778674.X
申请日:2023-12-22
Applicant: 重庆邮电大学
IPC: G16H50/70 , G06F16/36 , G06N3/0464
Abstract: 本发明涉及医疗领域和数据挖掘技术领域,特别涉及一种利用疾病知识图谱发现疾病‑症状关联关系的方法,包括将疾病知识图谱分解得到疾病和症状相关的二分网络,并以邻接矩阵的形式保存;根据二分网络计算疾病节点和症状节点的相似性矩阵,并将其融合为一个综合疾病相似性矩阵和一个综合症状相似性矩阵;构建图自编码器提取得到节点的非线性表示;使用非负矩阵分解提取节点的线性表示;将线性表示和非线性表示结合,通过全连接神经网络进行疾病‑症状关联预测;本发明在相似性网络计算阶段提出了一种更全面且有效的相似性网络计算方法,将图结构上下文信息与节点序列信息相结合,获得更可靠的相似性网络。
-