基于深度卷积迁移学习软件系统故障监测方法及系统

    公开(公告)号:CN113778811A

    公开(公告)日:2021-12-10

    申请号:CN202111157772.2

    申请日:2021-09-28

    Abstract: 本发明涉及一种基于深度卷积迁移学习软件系统故障监测方法及系统,属于计算机软件测试领域,包括以下步骤:收集已有负载S下的软件系统负载数据集,构建源域数据集;对每一组原始响应时间都进行点数分割,构建源域样本数据集;构建目标域数据集,并对目标域数据集中的每组原始响应时间进行点数分割,构建目标域样本数据集;将源域样本数据集和目标域样本数据集利用深度卷积迁移学习,实现对软件系统进行故障监测。本发明可以在面对多负载下故障样本较少或某故障样本缺失等情况发生时,仍旧可以获得较为理想的故障监测效果,且在新负载下的数据集,不需要重新训练网络模型,可以节约大量时间。

Patent Agency Ranking