-
公开(公告)号:CN112418525A
公开(公告)日:2021-02-26
申请号:CN202011325005.3
申请日:2020-11-24
Applicant: 重庆邮电大学
IPC: G06Q10/04 , G06Q50/00 , G06N3/04 , G06F16/9536 , G06F40/289
Abstract: 本发明属于社交网络分析领域,具体为一种社交话题群体行为的预测方法、装置及计算机存储介质;所述预测方法包括构建出对抗生成网络对话题数据进行数据增强;采用节点游走策略形成话题序列;以最大化概率熵为目标,提取出游走完成的话题序列的低维向量;采用融合注意力机制将数据增强后的话题数据的文本信息映射到低维的向量空间,提取出影响群体行为的文本特征因素;输入话题序列的低维向量和文本特征因素,采用卷积神经网络预测出下一时间段的潜在话题节点群体用户是否会参与热点话题的传播;本发明有效地缓解了有效数据稀疏性、话题传播特征空间复杂性和话题时限性带来的问题,提高了社交话题群体行为预测的精度。
-
公开(公告)号:CN112418525B
公开(公告)日:2022-06-10
申请号:CN202011325005.3
申请日:2020-11-24
Applicant: 重庆邮电大学
IPC: G06Q10/04 , G06Q50/00 , G06N3/04 , G06F16/9536 , G06F40/289
Abstract: 本发明属于社交网络分析领域,具体为一种社交话题群体行为的预测方法、装置及计算机存储介质;所述预测方法包括构建出对抗生成网络对话题数据进行数据增强;采用节点游走策略形成话题序列;以最大化概率熵为目标,提取出游走完成的话题序列的低维向量;采用融合注意力机制将数据增强后的话题数据的文本信息映射到低维的向量空间,提取出影响群体行为的文本特征因素;输入话题序列的低维向量和文本特征因素,采用卷积神经网络预测出下一时间段的潜在话题节点群体用户是否会参与热点话题的传播;本发明有效地缓解了有效数据稀疏性、话题传播特征空间复杂性和话题时限性带来的问题,提高了社交话题群体行为预测的精度。
-