-
公开(公告)号:CN111224906A
公开(公告)日:2020-06-02
申请号:CN202010107381.9
申请日:2020-02-21
Applicant: 重庆邮电大学
IPC: H04L25/02 , H04B7/0413 , G06N3/04 , G06N3/08
Abstract: 本发明涉及一种基于深度神经网络的近似消息传递大规模MIMO信号检测算法,属于无线通信技术领域,包括步骤一:简化用于大规模MIMO系统置信传播算法并标量化,得到最初适用于大规模MIMO系统的近似消息传递算法;步骤二:设置训练参数,得到改进的近似消息传递算法;步骤三:将带有训练参数的近似消息传递算法展开成一个用于大规模MIMO系统检测的深度神经网络;步骤四:对所构建的深度神经网络进行离线训练,得到适用于MIMO系统检测的最优近似消息传递深度神经网络,用训练好的神经网络进行在线检测。本发明实现了以较低复杂度,达到了更低的误码率,并且对各种信道、天线配置以及不同的调制方式都具有稳健性。
-
公开(公告)号:CN111224906B
公开(公告)日:2022-04-01
申请号:CN202010107381.9
申请日:2020-02-21
Applicant: 重庆邮电大学
IPC: H04L25/02 , H04B7/0413 , G06N3/04 , G06N3/08
Abstract: 本发明涉及一种基于深度神经网络的近似消息传递大规模MIMO信号检测算法,属于无线通信技术领域,包括步骤一:简化用于大规模MIMO系统置信传播算法并标量化,得到最初适用于大规模MIMO系统的近似消息传递算法;步骤二:设置训练参数,得到改进的近似消息传递算法;步骤三:将带有训练参数的近似消息传递算法展开成一个用于大规模MIMO系统检测的深度神经网络;步骤四:对所构建的深度神经网络进行离线训练,得到适用于MIMO系统检测的最优近似消息传递深度神经网络,用训练好的神经网络进行在线检测。本发明实现了以较低复杂度,达到了更低的误码率,并且对各种信道、天线配置以及不同的调制方式都具有稳健性。
-