一种基于大数据的网络流量异常实时监测系统

    公开(公告)号:CN107332848A

    公开(公告)日:2017-11-07

    申请号:CN201710542877.7

    申请日:2017-07-05

    Abstract: 本发明请求保护一种基于大数据的网络流量异常实时监测的系统,使用了一种解耦合的系统设计,数据采集,数据处理,数据分析与及时响应自成一体,系统高度模块化。其特征在于:用嗅探器进行了数据的分布式采集,实现全网监测,实时抓取网络数据包信息。根据URL结构设定了特定规则,构建数据处理模块,实现对URL的有效信息提取。大量URL数据输入到利用bagging集成的机器学习器中进行有监督式学习,得到能够识别URL类型的数据分析模块;Web端与移动客户端的结合以多角度,多层次呈现数据。安装在服务器上的防御插件实现了对服务器的及时防护,与此同时,实时更新系统分类器数据,提高系统实用性。

    一种基于大数据的网络流量异常实时监测系统

    公开(公告)号:CN107332848B

    公开(公告)日:2020-05-12

    申请号:CN201710542877.7

    申请日:2017-07-05

    Abstract: 本发明请求保护一种基于大数据的网络流量异常实时监测的系统,使用了一种解耦合的系统设计,数据采集,数据处理,数据分析与及时响应自成一体,系统高度模块化。其特征在于:用嗅探器进行了数据的分布式采集,实现全网监测,实时抓取网络数据包信息。根据URL结构设定了特定规则,构建数据处理模块,实现对URL的有效信息提取。大量URL数据输入到利用bagging集成的机器学习器中进行有监督式学习,得到能够识别URL类型的数据分析模块;Web端与移动客户端的结合以多角度,多层次呈现数据。安装在服务器上的防御插件实现了对服务器的及时防护,与此同时,实时更新系统分类器数据,提高系统实用性。

Patent Agency Ranking