-
公开(公告)号:CN115587633B
公开(公告)日:2024-11-22
申请号:CN202211382618.X
申请日:2022-11-07
Applicant: 重庆邮电大学
IPC: G06N20/00 , G06F18/22 , G06F18/23213
Abstract: 本发明属于联邦学习技术应用领域,尤其涉及一种基于参数分层的个性化联邦学习方法;本发明包括:客户端在联邦学习前对本地模型进行参数划分,得到基础层参数和个性化层参数,将基础层参数与个性化层参数在每次联邦学习中进行更新,并基于更新后的基础层参数对客户端进行聚类划分,从而获取每个小组的组平均权重上传给服务器,服务器更新基础层参数;联邦学习完成后得到最优的基础层参数下发给客户端,客户端采用本地数据对本地模型进行训练得到个性化的本地模型;本发明通过参数分层和联邦训练中的聚类划分可以缓解每个客户端的非独立同分布数据所带来的异质性问题,有助于每个客户端最终的模型更适应于它本地的数据。
-
公开(公告)号:CN115587633A
公开(公告)日:2023-01-10
申请号:CN202211382618.X
申请日:2022-11-07
Applicant: 重庆邮电大学
IPC: G06N20/00 , G06F18/22 , G06F18/23213
Abstract: 本发明属于联邦学习技术应用领域,尤其涉及一种基于参数分层的个性化联邦学习方法;本发明包括:客户端在联邦学习前对本地模型进行参数划分,得到基础层参数和个性化层参数,将基础层参数与个性化层参数在每次联邦学习中进行更新,并基于更新后的基础层参数对客户端进行聚类划分,从而获取每个小组的组平均权重上传给服务器,服务器更新基础层参数;联邦学习完成后得到最优的基础层参数下发给客户端,客户端采用本地数据对本地模型进行训练得到个性化的本地模型;本发明通过参数分层和联邦训练中的聚类划分可以缓解每个客户端的非独立同分布数据所带来的异质性问题,有助于每个客户端最终的模型更适应于它本地的数据。
-