一种基于少样本关系预测模型的可解释方法

    公开(公告)号:CN114860953B

    公开(公告)日:2024-07-02

    申请号:CN202210466414.8

    申请日:2022-04-29

    Abstract: 本发明属于知识图谱领域,具体涉及一种基于少样本关系预测模型的可解释方法;该方法包括:对少样本关系预测模型的可解释性进行评估,得到可解释评估结果;根据可解释评估结果改进模型;获取来自用户的问题,将该问题输入改进好的少样本关系预测模型中,得到该问题的可信预测结果;本发明选取多种对比模型进行分析,通过改变少样本关系预测模型和对比模型的数据量和数据内容计算评价指标并分析不同数据量和不同数据内容对模型的影响;通过改变少样本关系预测模型中的卷积神经网络的超参数如激活函数、池化策略、正则化等计算评价指标并分析超参数对模型的影响;本发明提高了模型的关系预测结果的可信度,实用性高。

    一种基于多视图集成模型的可信知识图谱实体分类方法

    公开(公告)号:CN116028638A

    公开(公告)日:2023-04-28

    申请号:CN202211591549.3

    申请日:2022-12-12

    Abstract: 本发明提出一种基于多视图集成模型的可信知识图谱实体分类方法,所述方法包括获取知识图谱网络中的邻接矩阵和实体特征数据,生成知识图谱数据的原始视图;根据知识图谱关联信息计算出知识图谱实体邻接矩阵,根据知识图谱实体属性关系计算知识图谱实体特征矩阵;对知识图谱邻接矩阵构造出结构视图,对知识图谱实体特征矩阵构造出特征视图;将结构视图和原始视图输入到结构基模型中输出第一特征;将特征视图与原始视图输入到特征基模型中输出第二特征;将第一特征和第二特征输入到线性层中,集成输出知识图谱实体数据的类别。本方法利用集成模型结合结构视图与特征视图来对知识图谱实体进行分类,可充分地挖掘知识图谱数据的隐藏信息,提高鲁棒性。

    一种基于BCNN的命名实体识别模型训练方法及装置

    公开(公告)号:CN115983273A

    公开(公告)日:2023-04-18

    申请号:CN202211628716.7

    申请日:2022-12-18

    Abstract: 本发明属于语义分析技术领域,具体涉及一种基于BCNN的命名实体识别模型训练方法及装置;该方法包括:获取带有标注信息的命名实体数据集和分词数据集并进行划分,得到总训练集和总验证集;将总训练集输入到共享嵌入层中进行处理,得到命名实体嵌入表示和分词嵌入表示;采用编码器分别对命名实体嵌入表示和分词嵌入表示进行处理,得到命名实体编码特征和分词编码特征;采用解码器分别对命名实体编码特征和分词编码特征进行处理,得到命名实体识别结果和分词识别结果;计算模型总损失并根据模型总损失进行反向传播,调整模型参数,得到训练好的模型;本发明能够提高模型的编码效率并降低计算复杂度,大幅度降低资源和时间消耗。

    一种基于共享编码和协同注意力的知识图谱问答方法

    公开(公告)号:CN115905493A

    公开(公告)日:2023-04-04

    申请号:CN202211619825.2

    申请日:2022-12-15

    Abstract: 本发明属于知识图谱智能问答领域,具体涉及一种基于共享编码和协同注意力的知识图谱问答方法,包括:构建知识图谱;获取待问答的问句,根据问句从知识图谱中获取候选主题词集合和候选主题词实体的图谱信息;将问句、候选主题词集合和候选主题词实体的图谱信息输入到训练好的实体链接E‑GCNR模型中,得到候选主题词实体;根据候选主题词实体从知识图谱中获取候选答案集合和候选答案实体的图谱信息;将问句、候选答案集合和候选答案实体的图谱信息输入到训练好的答案推理CA‑BiLSTM模型中,得到问句的答案;本发明提出的共享编码方式和协同注意力机制可用于实体链接和答案推理两项任务中,具有广泛的适用性。

    一种基于少样本关系预测模型的可解释方法

    公开(公告)号:CN114860953A

    公开(公告)日:2022-08-05

    申请号:CN202210466414.8

    申请日:2022-04-29

    Abstract: 本发明属于知识图谱领域,具体涉及一种基于少样本关系预测模型的可解释方法;该方法包括:对少样本关系预测模型的可解释性进行评估,得到可解释评估结果;根据可解释评估结果改进模型;获取来自用户的问题,将该问题输入改进好的少样本关系预测模型中,得到该问题的可信预测结果;本发明选取多种对比模型进行分析,通过改变少样本关系预测模型和对比模型的数据量和数据内容计算评价指标并分析不同数据量和不同数据内容对模型的影响;通过改变少样本关系预测模型中的卷积神经网络的超参数如激活函数、池化策略、正则化等计算评价指标并分析超参数对模型的影响;本发明提高了模型的关系预测结果的可信度,实用性高。

Patent Agency Ranking