一种基于轻量化卷积的无锚框目标检测方法

    公开(公告)号:CN113011384A

    公开(公告)日:2021-06-22

    申请号:CN202110390662.4

    申请日:2021-04-12

    Inventor: 袁正午 寇思佳

    Abstract: 本发明涉及一种基于轻量化卷积的无锚框目标检测方法,属于计算机视觉目标检测领域。该方法包括:S1:构造轻量化的骨干网络,并输入图片到轻量化的骨干网络中,提取特征图;S2:根据得到的特征图进行左上角点和右下角点的池化操作;S3:池化后的左上角点、右下角点都分别进行十字星变形卷积与角点预测操作;S4:根据预测的角点和向心位移算法进行角点匹配,由预测边界框的得分输出最终结果。本发明采用的无锚框的设计思想,在训练过程中可以解决正负样本不平衡,超参数设计复杂,锚框的复杂计算等问题,同时轻量化的骨干网络可以达到有效压缩网络模型,降低模型参数量,减少计算资源消耗,提升运算速度的效果。

    一种基于轻量化卷积的无锚框目标检测方法

    公开(公告)号:CN113011384B

    公开(公告)日:2022-11-25

    申请号:CN202110390662.4

    申请日:2021-04-12

    Inventor: 袁正午 寇思佳

    Abstract: 本发明涉及一种基于轻量化卷积的无锚框目标检测方法,属于计算机视觉目标检测领域。该方法包括:S1:构造轻量化的骨干网络,并输入图片到轻量化的骨干网络中,提取特征图;S2:根据得到的特征图进行左上角点和右下角点的池化操作;S3:池化后的左上角点、右下角点都分别进行十字星变形卷积与角点预测操作;S4:根据预测的角点和向心位移算法进行角点匹配,由预测边界框的得分输出最终结果。本发明采用的无锚框的设计思想,在训练过程中可以解决正负样本不平衡,超参数设计复杂,锚框的复杂计算等问题,同时轻量化的骨干网络可以达到有效压缩网络模型,降低模型参数量,减少计算资源消耗,提升运算速度的效果。

Patent Agency Ranking