-
公开(公告)号:CN106777006B
公开(公告)日:2020-10-23
申请号:CN201611115832.3
申请日:2016-12-07
Applicant: 重庆邮电大学
IPC: G06F16/953 , G06F16/35
Abstract: 本发明涉及一种基于Spark下并行超网络的分类算法,具体包括以下步骤:步骤S1.把文本数据部署到Spark平台上;步骤S2.在Spark平台上对文本数据进行并行化预处理;步骤S3.在Spark平台上,对超网络算法的演化学习进行并行化实现。本发明主要解决在大规模文本数据量的情况下,演化超网络分类算法的并行处理问题,通过分布式数据存储阶段,数据预处理阶段,并且通过改变超边结构以及超网络演化计算方式,修改目标函数,完成对超网络算法的并行化处理,提高传统超网络的分类算法性能和效率,解决在海量数据中,传统的超网络模型已经难以满足时间和空间的限制。
-
公开(公告)号:CN106777006A
公开(公告)日:2017-05-31
申请号:CN201611115832.3
申请日:2016-12-07
Applicant: 重庆邮电大学
IPC: G06F17/30
Abstract: 本发明涉及一种基于Spark下并行超网络的分类算法,具体包括以下步骤:步骤S1.把文本数据部署到Spark平台上;步骤S2.在Spark平台上对文本数据进行并行化预处理;步骤S3.在Spark平台上,对超网络算法的演化学习进行并行化实现。本发明主要解决在大规模文本数据量的情况下,演化超网络分类算法的并行处理问题,通过分布式数据存储阶段,数据预处理阶段,并且通过改变超边结构以及超网络演化计算方式,修改目标函数,完成对超网络算法的并行化处理,提高传统超网络的分类算法性能和效率,解决在海量数据中,传统的超网络模型已经难以满足时间和空间的限制。
-