一种基于最优传输理论的多模态医学图像融合方法

    公开(公告)号:CN109035137B

    公开(公告)日:2022-11-25

    申请号:CN201810844859.9

    申请日:2018-07-27

    Inventor: 秦红星 吴一凡

    Abstract: 本发明涉及一种基于最优传输理论的多模态医学图像融合方法,属于计算机图形学和医学图像处理技术领域,该方法包含如下步骤:S1:输入两张待融合的不同模态医学图像;S2:对源图像进行取反,对取反后的源图像进行归一化操作;S3:计算归一化操作之后源图像之间的最优传输质心;S4:根据最优传输质心进行图像取反,重构结果融合图像。本发明方法能够在保留更多源图像信息的情况下,消除掉较多的噪声,同时降低计算复杂度的方法,进行更快速有效的多模态医学图像的融合。同时,本发明方法运行速度快,输入图像后能够快速地给出融合结果,效率较高,鲁棒性强,不仅适应于医学图像,也可以对非医学图像进行有效地融合。

    一种基于最优传输理论的多模态医学图像融合方法

    公开(公告)号:CN109035137A

    公开(公告)日:2018-12-18

    申请号:CN201810844859.9

    申请日:2018-07-27

    Inventor: 秦红星 吴一凡

    CPC classification number: G06T3/0068

    Abstract: 本发明涉及一种基于最优传输理论的多模态医学图像融合方法,属于计算机图形学和医学图像处理技术领域,该方法包含如下步骤:S1:输入两张待融合的不同模态医学图像;S2:对源图像进行取反,对取反后的源图像进行归一化操作;S3:计算归一化操作之后源图像之间的最优传输质心;S4:根据最优传输质心进行图像取反,重构结果融合图像。本发明方法能够在保留更多源图像信息的情况下,消除掉较多的噪声,同时降低计算复杂度的方法,进行更快速有效的多模态医学图像的融合。同时,本发明方法运行速度快,输入图像后能够快速地给出融合结果,效率较高,鲁棒性强,不仅适应于医学图像,也可以对非医学图像进行有效地融合。

Patent Agency Ranking