一种基于单类支持向量机的煤矿瓦斯数据标记方法

    公开(公告)号:CN111814851B

    公开(公告)日:2021-07-06

    申请号:CN202010584834.7

    申请日:2020-06-24

    Abstract: 本发明属于煤矿瓦斯安全邻域,具体涉及一种基于单类支持向量机的煤矿瓦斯数据标记方法,包括:实时获取原始数据集,将原始数据集进行分类,得到二分类不平衡数据集;采用K‑means聚类算法对二分类不平衡数据集进行处理,得到k个样本池;每个样本池包括一个未打标的样本池和一个打标的样本池;将k个样本池中的数据分别输入到单类支持向量机模型中,预测k个未打标样本池中的打标标签;根据预测的打标标签对原始数据进行打标;本发明在对煤矿瓦斯数据进行标记时采用单类支持向量机主动学习,减少了煤矿瓦斯数据的标记样本;本发明在进行主动学习过程中加入密度以及分布信息,使得挑选的样本更具有代表性。

    一种基于多视图集成学习的煤矿瓦斯浓度预警方法

    公开(公告)号:CN111210085A

    公开(公告)日:2020-05-29

    申请号:CN202010039863.5

    申请日:2020-01-15

    Abstract: 本发明涉及数据挖掘技术领域,具体涉及一种基于多视图集成学习的煤矿瓦斯浓度预警方法,检测当前煤矿瓦斯浓度风险等级,若当前煤矿瓦斯浓度风险等级大于事故阈值,则进行预警提示,包括:读取煤矿瓦斯浓度数据集,进行预处理后分成训练集和测试集;计算特征间的互信息和特征与标签之间的互信息,得到关联矩阵;利用视图内特征间互信息之和分析视图的充分冗余性,利用典型相关分析技术分析视图间条件独立性,利用二者通过有监督的方式将单视图数据构造为多视图数据;在多视图构造结果上利用多视图集成学习算法融合各个视图上的结果,得到煤矿瓦斯浓度风险等级。本发明能够综合利用当前煤矿瓦斯浓度监测数据,提高预警准确度。

    一种基于单类支持向量机的煤矿瓦斯数据标记方法

    公开(公告)号:CN111814851A

    公开(公告)日:2020-10-23

    申请号:CN202010584834.7

    申请日:2020-06-24

    Abstract: 本发明属于煤矿瓦斯安全邻域,具体涉及一种基于单类支持向量机的煤矿瓦斯数据标记方法,包括:实时获取原始数据集,将原始数据集进行分类,得到二分类不平衡数据集;采用K-means聚类算法对二分类不平衡数据集进行处理,得到k个样本池;每个样本池包括一个未打标的样本池和一个打标的样本池;将k个样本池中的数据分别输入到单类支持向量机模型中,预测k个未打标样本池中的打标标签;根据预测的打标标签对原始数据进行打标;本发明在对煤矿瓦斯数据进行标记时采用单类支持向量机主动学习,减少了煤矿瓦斯数据的标记样本;本发明在进行主动学习过程中加入密度以及分布信息,使得挑选的样本更具有代表性。

    一种基于多视图集成学习的煤矿瓦斯浓度预警方法

    公开(公告)号:CN111210085B

    公开(公告)日:2023-01-24

    申请号:CN202010039863.5

    申请日:2020-01-15

    Abstract: 本发明涉及数据挖掘技术领域,具体涉及一种基于多视图集成学习的煤矿瓦斯浓度预警方法,检测当前煤矿瓦斯浓度风险等级,若当前煤矿瓦斯浓度风险等级大于事故阈值,则进行预警提示,包括:读取煤矿瓦斯浓度数据集,进行预处理后分成训练集和测试集;计算特征间的互信息和特征与标签之间的互信息,得到关联矩阵;利用视图内特征间互信息之和分析视图的充分冗余性,利用典型相关分析技术分析视图间条件独立性,利用二者通过有监督的方式将单视图数据构造为多视图数据;在多视图构造结果上利用多视图集成学习算法融合各个视图上的结果,得到煤矿瓦斯浓度风险等级。本发明能够综合利用当前煤矿瓦斯浓度监测数据,提高预警准确度。

Patent Agency Ranking