-
公开(公告)号:CN112800111B
公开(公告)日:2022-08-02
申请号:CN202110114662.1
申请日:2021-01-26
Applicant: 重庆邮电大学
IPC: G06F16/2458 , G06F16/29 , G06N3/04 , G06N3/08
Abstract: 本发明涉及一种基于训练数据挖掘的位置预测方法,属于位置预测领域。该方法包括:S1:获取用户‑位置交互数据;S2:分别对用户和位置的特征进行embedding;S3:选择正负样本;S4:使用基于流行度原则和信息量公式的负样本抽样算法抽取部分负样本;S5:通过两种不同的策略来挖掘Hard negative;S6:构建Hard selection strategy来训练负样本;S7:构建NDA‑GAN模型;S8:运用训练好的NDA‑GAN模型进行位置预测,得到TOP‑K排序,预测用户下一时刻可能访问的地点序列。本发明能够更加准确的预测用户将会访问的位置,提高位置预测系统的性能。
-
公开(公告)号:CN112800111A
公开(公告)日:2021-05-14
申请号:CN202110114662.1
申请日:2021-01-26
Applicant: 重庆邮电大学
IPC: G06F16/2458 , G06F16/29 , G06N3/04 , G06N3/08
Abstract: 本发明涉及一种基于训练数据挖掘的位置预测方法,属于位置预测领域。该方法包括:S1:获取用户‑位置交互数据;S2:分别对用户和位置的特征进行embedding;S3:选择正负样本;S4:使用基于流行度原则和信息量公式的负样本抽样算法抽取部分负样本;S5:通过两种不同的策略来挖掘Hard negative;S6:构建Hard selection strategy来训练负样本;S7:构建NDA‑GAN模型;S8:运用训练好的NDA‑GAN模型进行位置预测,得到TOP‑K排序,预测用户下一时刻可能访问的地点序列。本发明能够更加准确的预测用户将会访问的位置,提高位置预测系统的性能。
-