-
公开(公告)号:CN115097313A
公开(公告)日:2022-09-23
申请号:CN202210744779.2
申请日:2022-06-27
Applicant: 重庆理工大学 , 哈尔滨工业大学(威海)
IPC: G01R31/367 , G01R31/388
Abstract: 本发明具体涉及适用于多工况全电量区间的动力电池状态估算方法,包括:建立动力电池的等效电路模型,并对等效电路模型进行参数辨识;采集动力电池的开路电压特征数据并拟合动力电池的SOC‑OCV曲线;基于等效电路模型以及动态特征数据和SOC‑OCV曲线结合各种滤波算法生成对应的端电压预测值和SOC估计值;基于端电压预测值与对应实测值之间的电压残差,结合OWA算子为各种滤波算法的SOC估计值分配对应的加权值;基于各种滤波算法的SOC估计值及对应的加权值进行加权计算,得到动力电池的融合SOC估计值作为其状态估算结果。本发明能够有效融合多种滤波算法的SOC估计结果并实现多种滤波算法的互补,进而能够实现动力电池多工况全电量区间的SOC估计全局最优。
-
公开(公告)号:CN115097313B
公开(公告)日:2025-02-11
申请号:CN202210744779.2
申请日:2022-06-27
Applicant: 重庆理工大学 , 哈尔滨工业大学(威海)
IPC: G01R31/367 , G01R31/388
Abstract: 本发明具体涉及适用于多工况全电量区间的动力电池状态估算方法,包括:建立动力电池的等效电路模型,并对等效电路模型进行参数辨识;采集动力电池的开路电压特征数据并拟合动力电池的SOC‑OCV曲线;基于等效电路模型以及动态特征数据和SOC‑OCV曲线结合各种滤波算法生成对应的端电压预测值和SOC估计值;基于端电压预测值与对应实测值之间的电压残差,结合OWA算子为各种滤波算法的SOC估计值分配对应的加权值;基于各种滤波算法的SOC估计值及对应的加权值进行加权计算,得到动力电池的融合SOC估计值作为其状态估算结果。本发明能够有效融合多种滤波算法的SOC估计结果并实现多种滤波算法的互补,进而能够实现动力电池多工况全电量区间的SOC估计全局最优。
-
公开(公告)号:CN114460471B
公开(公告)日:2025-04-15
申请号:CN202210135245.X
申请日:2022-02-14
Applicant: 重庆理工大学
IPC: G01R31/367 , G01R31/388 , G06F30/27
Abstract: 本发明具体涉及基于贝叶斯概率的动力电池多算法融合SOC估计方法,包括:构建相应的等效电路模型,对等效电路模型对应的模型参数进行参数辨识;基于多种估计算法分别构建用于预测动力电池端电压和SOC的多个观测器;在动态应力测试工况下,采集动力电池的关联参数,输入各个观测器以输出对应的端电压预测值和SOC估计值;基于不同时刻下的端电压预测值与对应实测值之间的残差,结合贝叶斯概率分配对应的加权值;基于对应的加权值对各个观测器输出的SOC估计值进行加权累加,生成对应的融合SOC估计值。本发明能够有效融合多种估计算法的SOC估计结果并实现多种估计算法的互补,从而能够在动力电池的整个充放电区间保持SOC估计全局最优。
-
公开(公告)号:CN114460471A
公开(公告)日:2022-05-10
申请号:CN202210135245.X
申请日:2022-02-14
Applicant: 重庆理工大学
IPC: G01R31/367 , G01R31/388 , G06F30/27
Abstract: 本发明具体涉及基于贝叶斯概率的动力电池多算法融合SOC估计方法,包括:构建相应的等效电路模型,对等效电路模型对应的模型参数进行参数辨识;基于多种估计算法分别构建用于预测动力电池端电压和SOC的多个观测器;在动态应力测试工况下,采集动力电池的关联参数,输入各个观测器以输出对应的端电压预测值和SOC估计值;基于不同时刻下的端电压预测值与对应实测值之间的残差,结合贝叶斯概率分配对应的加权值;基于对应的加权值对各个观测器输出的SOC估计值进行加权累加,生成对应的融合SOC估计值。本发明能够有效融合多种估计算法的SOC估计结果并实现多种估计算法的互补,从而能够在动力电池的整个充放电区间保持SOC估计全局最优。
-
-
-