基于建筑物基底矢量的遥感影像屋顶轮廓提取方法

    公开(公告)号:CN107092877B

    公开(公告)日:2020-01-24

    申请号:CN201710237766.5

    申请日:2017-04-12

    Abstract: 本发明公开了一种基于建筑物基底矢量的遥感影像屋顶轮廓提取方法,包括利用已有建筑物基底矢量图斑获取轮廓多边形;根据所述轮廓多边形生成待匹配建筑物屋顶的轮廓约束模板;针对待提取的遥感影像,选择符合建筑物特性的影像特征;基于相似性测度,利用轮廓约束模板和影像特征,采用匹配优化方法搜寻最佳匹配位置,获取建筑物屋顶轮廓图像等步骤。本发明技术方案实现了遥感影像中建筑物基底矢量与屋顶影像的轮廓匹配,可自动获取遥感影像中建筑物屋顶,同时还可以快速检测已有建筑物变化情况,对后续进一步开展违法建筑动态监测具有重要意义。

    一种基于矢量空间数据对象存储顺序的数字水印方法

    公开(公告)号:CN104462886A

    公开(公告)日:2015-03-25

    申请号:CN201410707255.1

    申请日:2014-11-28

    CPC classification number: G06F21/16 G06F2221/0737

    Abstract: 本发明公开了一种基于矢量空间数据对象存储顺序的数字水印方法,首先利用算术编码技术,将水印信息转换为一个整数N,计算出最少需要的元素个数M,并进行全排列,解算出序号N的元素具体排列顺序。对矢量数据对象按坐标的大小进行排序,并按M对数据对象进行分组;根据序号N的元素具体排列顺序对每组数据对象的存储顺序进行调整。水印信息提取时,对数据对象按坐标大小进行排序,通过与原始数据对象存储顺序进行比较分析,提取水印单元和具体的数据对象排列顺序,然后推算出排列序号N,再利用算术编码技术对N进行译码,从而提取出水印信息。本发明可实现水印信息的嵌入和提取,对缩放、平移、旋转、坐标转换等攻击具有较好的鲁棒性。

    基于GPU-CPU协同的卫星影像拉花变形快速检测方法

    公开(公告)号:CN108230326B

    公开(公告)日:2018-11-30

    申请号:CN201810126230.0

    申请日:2018-02-08

    Abstract: 本发明公开了一种基于GPU‑CPU协同的卫星影像拉花变形快速检测方法,包括CPU端加载原始卫片、RPC参数和数字高程模型DEM,迭代求解校正后正射影像的大小和范围;CPU端设计GPU线程格网的分配,并将相应数据从内存拷贝入对应显存;GPU端按线程格网并行计算每个像素对应原始卫片上的像素坐标;GPU端统计当前像素与周边像素重叠次数,并进行拉花像素判断;GPU端按线程格网对二值图像进行腐蚀处理与膨胀处理;CPU端将二值图像结果从全局存储器拷到内存并矢量化,获得拉花变形区域矢量数据等步骤。其显著效果是:实现了卫星影像中拉花变形区域的快速自动检测,大大提高了光学遥感卫星正射影像中拉花变形的查找和质检效率。

Patent Agency Ranking