-
公开(公告)号:CN103227227A
公开(公告)日:2013-07-31
申请号:CN201310142371.9
申请日:2013-04-23
Applicant: 重庆大学
IPC: H01L31/058 , H01L31/18 , H01L27/20 , H01L21/77
CPC classification number: Y02E10/50 , Y02P70/521
Abstract: 本发明涉及一种基于碳纳米管和放电回路的光供能采集器,由悬臂梁结构和放电回路构成。悬臂梁结构包括:基底支撑、下电极、压电层、上电极、吸光层,采用碳纳米管作为吸光层,压电材料构成压电层,金属材料构成上下电极。放电回路包括:接触电极,负载,连接导线,接触电极连接负载一端,负载另一端连接上电极,构成放电回路,并输出电压。本发明利用碳纳米管的光热和光电效应,同时利用放电回路,保持了采集器的持续交流信号输出。
-
公开(公告)号:CN103149193B
公开(公告)日:2015-05-20
申请号:CN201310058623.X
申请日:2013-02-25
Applicant: 重庆大学
IPC: G01N21/65
Abstract: 本发明涉及一种用于分子检测的基于金纳米粒子修饰碳纳米管阵列的表面增强拉曼散射光流控系统,该系统是采用碳纳米管阵列作为纳米金属结构载体,并在此碳纳米管阵列载体上沉积金纳米粒子,形成三维表面增强拉曼散射活性基底,作为该系统中微通道的探测区;激光光源通过光纤导入,入射到三维表面增强拉曼散射活性基底;散射光通过光纤导出到光谱仪进行光谱测试;调压装置保证微通道内待测分子顺利流动。本发明的三维表面增强拉曼散射活性基底制作工艺简单,成本低,无毒无污染;碳纳米管阵列表面积大,有效增加了金纳米粒子的填充效果,从而增加了拉曼散射截面积,拉曼散射信号强度增大;利用光纤导入激光和收集拉曼散射光,无需传统的显微聚焦和对准;系统体积小,成本低,便于实现分子的便携式、在线检测。
-
公开(公告)号:CN103227227B
公开(公告)日:2016-07-06
申请号:CN201310142371.9
申请日:2013-04-23
Applicant: 重庆大学
IPC: H01L31/0525 , H01L31/18 , H01L27/20 , H01L21/77
CPC classification number: Y02E10/50 , Y02P70/521
Abstract: 本发明涉及一种基于碳纳米管和放电回路的光供能采集器,由悬臂梁结构和放电回路构成。悬臂梁结构包括:基底支撑、下电极、压电层、上电极、吸光层,采用碳纳米管作为吸光层,压电材料构成压电层,金属材料构成上下电极。放电回路包括:接触电极,负载,连接导线,接触电极连接负载一端,负载另一端连接上电极,构成放电回路,并输出电压。本发明利用碳纳米管的光热和光电效应,同时利用放电回路,保持了采集器的持续交流信号输出。
-
公开(公告)号:CN103149193A
公开(公告)日:2013-06-12
申请号:CN201310058623.X
申请日:2013-02-25
Applicant: 重庆大学
IPC: G01N21/65
Abstract: 本发明涉及一种用于分子检测的基于金纳米粒子修饰碳纳米管阵列的表面增强拉曼散射光流控系统,该系统是采用碳纳米管阵列作为纳米金属结构载体,并在此碳纳米管阵列载体上沉积金纳米粒子,形成三维表面增强拉曼散射活性基底,作为该系统中微通道的探测区;激光光源通过光纤导入,入射到三维表面增强拉曼散射活性基底;散射光通过光纤导出到光谱仪进行光谱测试;调压装置保证微通道内待测分子顺利流动。本发明的三维表面增强拉曼散射活性基底制作工艺简单,成本低,无毒无污染;碳纳米管阵列表面积大,有效增加了金纳米粒子的填充效果,从而增加了拉曼散射截面积,拉曼散射信号强度增大;利用光纤导入激光和收集拉曼散射光,无需传统的显微聚焦和对准;系统体积小,成本低,便于实现分子的便携式、在线检测。
-
-
-