-
公开(公告)号:CN103940767A
公开(公告)日:2014-07-23
申请号:CN201410190563.1
申请日:2014-05-07
Applicant: 重庆大学
Abstract: 本发明公开了一种基于多流形学习的气体浓度反演方法,1)采集光源发出的光通过不同已知浓度气体时的光谱数据;2)将采集的吸收光谱数据减去暗光谱并进行归一化处理;3)利用NPE算法对不同浓度的预处理后的数据分别进行特征提取;4)将得到的特征数据作为训练样本,并送入SVR分类器进行训练,构建反演模型;5)测试样本光谱数据采集;6)将测试样本光谱数据预处理后再进行特征提取,并将得到的特征数据送入构建好的反演模型中,反演得到待测气体浓度。本发明可以提高气体浓度反演精度,改善浓度反演算法的重复性和可移植性,尤其能够提高短光程条件下低浓度气体的反演精度,满足在线检测的精度要求。
-
公开(公告)号:CN103940767B
公开(公告)日:2016-01-13
申请号:CN201410190563.1
申请日:2014-05-07
Applicant: 重庆大学
Abstract: 本发明公开了一种基于多流形学习的气体浓度反演方法,1)采集光源发出的光通过不同已知浓度气体时的光谱数据;2)将采集的吸收光谱数据减去暗光谱并进行归一化处理;3)利用NPE算法对不同浓度的预处理后的数据分别进行特征提取;4)将得到的特征数据作为训练样本,并送入SVR分类器进行训练,构建反演模型;5)测试样本光谱数据采集;6)将测试样本光谱数据预处理后再进行特征提取,并将得到的特征数据送入构建好的反演模型中,反演得到待测气体浓度。本发明可以提高气体浓度反演精度,改善浓度反演算法的重复性和可移植性,尤其能够提高短光程条件下低浓度气体的反演精度,满足在线检测的精度要求。
-