-
公开(公告)号:CN104751191B
公开(公告)日:2017-11-03
申请号:CN201510197492.2
申请日:2015-04-23
Applicant: 重庆大学
IPC: G06K9/62
Abstract: 本发明提供一种稀疏自适应半监督多流形学习的高光谱影像分类方法,其提出了半监督稀疏多流形学习维数约简算法和最近邻多流形分类算法,该方法仅通过对数据样本中的少量数据点进行标注,并结合部分未标注数据点来进行学习,能很好地揭示出蕴藏在高维数据的内在属性以及多流形结构,提取出具有更好鉴别性能的低维嵌入特征,从而改善分类效果,提高对高光谱遥感影像中地物类别的分类精度,因此能够有效的解决稀疏流形聚类与嵌入算法的“样本外学习”和遥感图像标记类别标签困难的问题;同时,在PaviaU数据集上的实验结果表明,与现有技术中所常用的识别方法相比,本发明方法具有更好的分类效果。
-
公开(公告)号:CN104751191A
公开(公告)日:2015-07-01
申请号:CN201510197492.2
申请日:2015-04-23
Applicant: 重庆大学
IPC: G06K9/62
Abstract: 本发明提供一种稀疏自适应半监督多流形学习的高光谱影像分类方法,其提出了半监督稀疏多流形学习维数约简算法和最近邻多流形分类算法,该方法仅通过对数据样本中的少量数据点进行标注,并结合部分未标注数据点来进行学习,能很好地揭示出蕴藏在高维数据的内在属性以及多流形结构,提取出具有更好鉴别性能的低维嵌入特征,从而改善分类效果,提高对高光谱遥感影像中地物类别的分类精度,因此能够有效的解决稀疏流形聚类与嵌入算法的“样本外学习”和遥感图像标记类别标签困难的问题;同时,在PaviaU数据集上的实验结果表明,与现有技术中所常用的识别方法相比,本发明方法具有更好的分类效果。
-