基于深度强化学习的水面无人艇路径跟踪方法

    公开(公告)号:CN115016496A

    公开(公告)日:2022-09-06

    申请号:CN202210772926.7

    申请日:2022-06-30

    Applicant: 重庆大学

    Abstract: 本发明具体涉及基于深度强化学习的水面无人艇路径跟踪方法,包括:将目标无人艇的路径跟踪问题转换为马尔可夫决策过程,设置对应的状态空间、动作空间和奖励函数;获取目标无人艇的规划路径;根据目标无人艇的规划路径结合实时位姿信息计算参考航向角;然后基于目标无人艇的参考航向角、实时位姿信息和环境干扰信息生成目标无人艇当前的状态值;将目标无人艇当前的状态值输入经过训练的策略模型中,输出最优的动作值;策略模型基于柔性演员评论家算法构建;将最优动作值发送给目标无人艇执行;直至完成规划路径的跟踪控制。本发明无需进行环境和无人艇运动建模并且具备自适应能力,从而能够进一步提高无人艇路径跟踪控制的稳定性和准确性。

    基于深度强化学习的水面无人艇路径跟踪方法

    公开(公告)号:CN115016496B

    公开(公告)日:2024-11-22

    申请号:CN202210772926.7

    申请日:2022-06-30

    Applicant: 重庆大学

    Abstract: 本发明具体涉及基于深度强化学习的水面无人艇路径跟踪方法,包括:将目标无人艇的路径跟踪问题转换为马尔可夫决策过程,设置对应的状态空间、动作空间和奖励函数;获取目标无人艇的规划路径;根据目标无人艇的规划路径结合实时位姿信息计算参考航向角;然后基于目标无人艇的参考航向角、实时位姿信息和环境干扰信息生成目标无人艇当前的状态值;将目标无人艇当前的状态值输入经过训练的策略模型中,输出最优的动作值;策略模型基于柔性演员评论家算法构建;将最优动作值发送给目标无人艇执行;直至完成规划路径的跟踪控制。本发明无需进行环境和无人艇运动建模并且具备自适应能力,从而能够进一步提高无人艇路径跟踪控制的稳定性和准确性。

Patent Agency Ranking