-
公开(公告)号:CN104881686A
公开(公告)日:2015-09-02
申请号:CN201510282981.8
申请日:2015-05-28
Applicant: 重庆大学
CPC classification number: G06K9/6269 , G06T7/0012 , G06T2207/10088 , G06T2207/30016
Abstract: 本发明公开了一种基于脑磁共振影像的Aβ蛋白沉积信息检测系统,设置有MRI图像采集装置、图像预处理装置、特征提取装置以及参数反演装置;所述特征提取装置用于提取最优特征子集;所述参数反演装置用于将所述最优特征子集反演出Aβ蛋白沉积含量;该参数反演装置中固化有训练好的SVM模型,所述SVM模型是通过选择多个训练样本图像的多个特征参数,并以每个样本图像对应PET图像的Aβ蛋白沉积含量为评价标准,最终训练出的最优特征子集与Aβ蛋白沉积含量的映射关系。其显著效果是:不仅具有无创、无辐射、安全、自动化程度高等优点,而且可应用于阿尔茨海默病诊断的临床应用。
-
公开(公告)号:CN104867153A
公开(公告)日:2015-08-26
申请号:CN201510280008.2
申请日:2015-05-28
Applicant: 重庆大学
Abstract: 本发明公开了一种基于脑磁共振影像中磷酸化tau蛋白含量信息的检测系统,设置有MRI图像采集装置、图像预处理装置、特征提取装置以及参数反演装置;所述参数反演装置用于将最优特征子集反演出磷酸化tau蛋白含量;该参数反演装置中固化有训练好的SVM模型,所述SVM模型是通过选择多个训练样本图像的多个特征参数,并以每个样本图像对应PET图像的磷酸化tau蛋白含量为评价标准,最终训练出的最优特征子集与磷酸化tau蛋白含量的映射关系。该系统可仅通过脑磁共振图像就可以定量显示磷酸化tau蛋白含量,具有无创、无辐射、安全、自动化程度高等优点。
-
公开(公告)号:CN104900235B
公开(公告)日:2019-05-28
申请号:CN201510268390.5
申请日:2015-05-25
Applicant: 重庆大学
Abstract: 本发明提供了一种基于基音周期混合特征参数的声纹识别方法,包括以下步骤:语音信号的采集输入、语音信号预处理、语音信号组合特征参数提取:即提取基音周期、LPCC、ΔLPCC、能量、能量的一阶差分、GFCC特征参数共同组合成多维特征向量、采用离散二进制粒子群优化算法对多维特征参数进行筛选、引入通用背景模型UBM训练得到说话人的声音模型、最后利用GMM‑UBM模型对测试语音进行识别。与单一的语音信号特征参数进行声纹识别相比,采用组合特征参数并使用GMM‑UBM模型的声纹识别系统,有效地提高了声纹识别的识别准确率和系统稳定性。
-
公开(公告)号:CN104867153B
公开(公告)日:2017-10-20
申请号:CN201510280008.2
申请日:2015-05-28
Applicant: 重庆大学
Abstract: 本发明公开了一种基于脑磁共振影像中磷酸化tau蛋白含量信息的检测系统,设置有MRI图像采集装置、图像预处理装置、特征提取装置以及参数反演装置;所述参数反演装置用于将最优特征子集反演出磷酸化tau蛋白含量;该参数反演装置中固化有训练好的SVM模型,所述SVM模型是通过选择多个训练样本图像的多个特征参数,并以每个样本图像对应PET图像的磷酸化tau蛋白含量为评价标准,最终训练出的最优特征子集与磷酸化tau蛋白含量的映射关系。该系统可仅通过脑磁共振图像就可以定量显示磷酸化tau蛋白含量,具有无创、无辐射、安全、自动化程度高等优点。
-
公开(公告)号:CN104835498A
公开(公告)日:2015-08-12
申请号:CN201510268063.X
申请日:2015-05-25
Applicant: 重庆大学
Abstract: 本发明提供了一种基于多类型组合特征参数的声纹识别方法,包括以下步骤:语音信号的采集输入、语音信号预处理、语音信号组合特征参数提取:即提取MFCC、LPCC、ΔMFCC、ΔLPCC、能量、能量的一阶差分、GFCC特征参数共同组成多维特征向量、采用遗传算法对多维特征参数进行筛选、引入通用背景模型UBM训练得到说话人的声音模型、最后利用GMM-UBM模型对测试语音进行识别。与单一的语音信号特征参数进行声纹识别相比,采用组合特征参数并使用GMM-UBM模型的声纹识别系统,有效地提高了声纹识别的识别准确率和系统稳定性。
-
公开(公告)号:CN104835498B
公开(公告)日:2018-12-18
申请号:CN201510268063.X
申请日:2015-05-25
Applicant: 重庆大学
Abstract: 本发明提供了一种基于多类型组合特征参数的声纹识别方法,包括以下步骤:语音信号的采集输入、语音信号预处理、语音信号组合特征参数提取:即提取MFCC、LPCC、ΔMFCC、ΔLPCC、能量、能量的一阶差分、GFCC特征参数共同组成多维特征向量、采用遗传算法对多维特征参数进行筛选、引入通用背景模型UBM训练得到说话人的声音模型、最后利用GMM‑UBM模型对测试语音进行识别。与单一的语音信号特征参数进行声纹识别相比,采用组合特征参数并使用GMM‑UBM模型的声纹识别系统,有效地提高了声纹识别的识别准确率和系统稳定性。
-
公开(公告)号:CN104900235A
公开(公告)日:2015-09-09
申请号:CN201510268390.5
申请日:2015-05-25
Applicant: 重庆大学
Abstract: 本发明提供了一种基于基音周期混合特征参数的声纹识别方法,包括以下步骤:语音信号的采集输入、语音信号预处理、语音信号组合特征参数提取:即提取基音周期、LPCC、ΔLPCC、能量、能量的一阶差分、GFCC特征参数共同组合成多维特征向量、采用离散二进制粒子群优化算法对多维特征参数进行筛选、引入通用背景模型UBM训练得到说话人的声音模型、最后利用GMM-UBM模型对测试语音进行识别。与单一的语音信号特征参数进行声纹识别相比,采用组合特征参数并使用GMM-UBM模型的声纹识别系统,有效地提高了声纹识别的识别准确率和系统稳定性。
-
-
-
-
-
-