一种权重的稀疏边缘正则化图像复原方法

    公开(公告)号:CN102147915A

    公开(公告)日:2011-08-10

    申请号:CN201110116829.4

    申请日:2011-05-06

    Applicant: 重庆大学

    Abstract: 本发明公开了一种权重的稀疏边缘正则化图像复原方法,(1)运用差分算子得到模糊噪声图像各个方向的梯度信息,并进行方向随机的组合,得到图像边缘的矩阵数学模型;(2)根据图像稀疏性原理以及不确定方程最佳稀疏解的定义,针对步骤(1)中得到的图像边缘模型,采用一种权重的稀疏性约束,约束图像的边缘,结合已知的退化函数,推导出图像复原的代价函数;(3)根据步骤(1)和步骤(2),利用一种改进的上界最小化方法对代价函数进行最优化求解,得到清晰的复原图像。本发明方法极大地丰富了图像边缘的信息量;采用一种权重的稀疏性边缘约束,有效地保护了图像的边缘特性;利用一种改进的上界最小化数学方法,得到高质量的复原图像。

    基于SplitBregman迭代的全变差正则化图像盲复原方法

    公开(公告)号:CN102208100B

    公开(公告)日:2012-10-31

    申请号:CN201110144242.4

    申请日:2011-05-31

    Applicant: 重庆大学

    Abstract: 本发明是一种基于Split Bregman迭代的全变差正则化图像盲复原方法,属于图像处理技术领域。其核心是通过图像先验信息及正则化的特点建立TV正则化盲复原代价函数,利用算子分裂技术将最小化问题转化为新的约束求解问题,通过加入惩罚项的方法将约束求解问题转化为分裂的代价函数,进而提出了扩展的SplitBregman迭代求解框架对分裂的代价函数进行求解。实验表明本发明方法能够有效、快速地复原图像,能针对多种模糊类型进行复原,克服传统TV正则化盲复原方法对复杂模糊类型或复杂图像复原效果不佳的缺点,且该发明方法对噪声具有很好的鲁棒性。

    一种权重的稀疏边缘正则化图像复原方法

    公开(公告)号:CN102147915B

    公开(公告)日:2012-06-27

    申请号:CN201110116829.4

    申请日:2011-05-06

    Applicant: 重庆大学

    Abstract: 本发明公开了一种权重的稀疏边缘正则化图像复原方法,(1)运用差分算子得到模糊噪声图像各个方向的梯度信息,并进行方向随机的组合,得到图像边缘的矩阵数学模型;(2)根据图像稀疏性原理以及不确定方程最佳稀疏解的定义,针对步骤(1)中得到的图像边缘模型,采用一种权重的稀疏性约束,约束图像的边缘,结合已知的退化函数,推导出图像复原的代价函数;(3)根据步骤(1)和步骤(2),利用一种改进的上界最小化方法对代价函数进行最优化求解,得到清晰的复原图像。本发明方法极大地丰富了图像边缘的信息量;采用一种权重的稀疏性边缘约束,有效地保护了图像的边缘特性;利用一种改进的上界最小化数学方法,得到高质量的复原图像。

    基于SplitBregman迭代的全变差正则化图像盲复原方法

    公开(公告)号:CN102208100A

    公开(公告)日:2011-10-05

    申请号:CN201110144242.4

    申请日:2011-05-31

    Applicant: 重庆大学

    Abstract: 本发明是一种基于SplitBregman迭代的全变差正则化图像盲复原方法,属于图像处理技术领域。其核心是通过图像先验信息及正则化的特点建立TV正则化盲复原代价函数,利用算子分裂技术将最小化问题转化为新的约束求解问题,通过加入惩罚项的方法将约束求解问题转化为分裂的代价函数,进而提出了扩展的SplitBregman迭代求解框架对分裂的代价函数进行求解。实验表明本发明方法能够有效、快速地复原图像,能针对多种模糊类型进行复原,克服传统TV正则化盲复原方法对复杂模糊类型或复杂图像复原效果不佳的缺点,且该发明方法对噪声具有很好的鲁棒性。

Patent Agency Ranking