-
公开(公告)号:CN116501884A
公开(公告)日:2023-07-28
申请号:CN202310337357.8
申请日:2023-03-31
Applicant: 重庆大学
IPC: G06F16/36 , G06F40/295 , G06F16/951 , G06N3/0442
Abstract: 本发明公开了一种基于BERT‑BiLSTM‑CRF的医药实体识别方法,构建知识图谱的主要目标是将具有复杂关系网络的非结构化数据转换为易于存储和查询的结构化三元组数据,而知识抽取是这一过程中最重要的任务之一,它包括实体识别和关系抽取。本发明基于在命名实体识别中的成功应用的BiLSTM‑CRF模型,并结合BERT预训练模型,进一步提高模型的语义解析能力,能更好地抓取词语特征、增加句子的语义化,从而提高医药实体的准确性和语义丰富度。本发明改善了原模型在embedding层仅依靠简单方式训练的词向量的表现。借助BERT模型的强大的特征抽取能力,在医药信息处理任务中,由于医药信息结构复杂且相关性强,通过引入BERT能够更准确、丰富地表达医药信息的相关特征。