-
公开(公告)号:CN118840860A
公开(公告)日:2024-10-25
申请号:CN202410864126.7
申请日:2024-06-30
Applicant: 重庆交通大学
IPC: G08G1/01 , G06Q10/04 , G06Q50/40 , G06F18/213 , G06F16/29 , G06N3/042 , G06N3/0442 , G06N3/045 , G06N3/0464 , G06N3/098 , G06F21/62 , G06F123/02
Abstract: 本发明公开了一种基于联邦学习和图神经网络的交通流量预测方法,包括:对交通流量预测的全局模型进行初始化,并将全局模型的参数发送给各个客户端;各个客户端将局部模型参数替换为获取的全局模型参数,进而获取本地的交通流量数据来训练局部模型;各个客户端通过差分隐私技术对局部模型参数加入噪声,然后进行上传;聚合各个客户端上传的局部模型参数,使用平均池化操作得到新的全局模型,进而将更新后的全局模型参数发送给各个客户端,不断更新全局模型直至收敛或达到最大迭代次数;将前M个时间点的交通流量输入训练好的全局模型中输出未来N个时间点的交通流量预测值。本发明能够实现交通流数据的隐私保护并提高交通流预测的精度。
-
公开(公告)号:CN119030682A
公开(公告)日:2024-11-26
申请号:CN202410973379.8
申请日:2024-07-19
Applicant: 重庆交通大学
Abstract: 本发明公开了一种零信任下基于隐私加密数据去重的车联网联邦学习方法,包括:各个车辆获取云端下发的全局模型参数,并更新本地模型的参数;各个车辆基于CSP和DLP的非对称同态加密算法对路边设备采集的数据进行数据去重;各个车辆接收路边设备上传的数据并将数据加入至本地数据集;各个车辆通过本地数据对本地模型进行训练;各个车辆将训练好的本地模型参数上传至云端,供云端通过聚合各个车辆的本地模型参数来更新全局模型参数;重复迭代训练,直至全局模型收敛或达到预设迭代次数。本发明在零信任构架和联邦学习框架下,通过CSP和DLP的非对称同态加密算法进行数据去重,保证联邦学习过程中模型训练的有效性,并减少数据传输、存储和处理的负担。
-