-
公开(公告)号:CN115190049B
公开(公告)日:2023-04-25
申请号:CN202210803255.6
申请日:2022-07-07
Applicant: 郑州轻工业大学
IPC: H04L43/0876 , H04L41/147 , H04L41/16
Abstract: 本发明涉及一种基于DDPG神经网络的网络流量预测方法,构建DDPG神经网络,获取当前时间片对应的时间片集合的网络流量数据,当前时间片对应的时间片集合包括当前时间片以及当前时间片之前的预设个数的时间片,网络流量数据包括预测使用数据和真实值数据,根据当前时间片对应的时间片集合的网络流量数据,训练DDPG神经网络,最后根据训练完成的DDPG神经网络进行网络流量预测。本发明提供的基于DDPG神经网络的网络流量预测方法能够减少因实际流量较高导致的被动迁移频次,在已知减少被动迁移权重和节能权重时,最大限度提高网络整体效果,即降低被动迁移次数和能耗。
-
公开(公告)号:CN115190049A
公开(公告)日:2022-10-14
申请号:CN202210803255.6
申请日:2022-07-07
Applicant: 郑州轻工业大学
IPC: H04L43/0876 , H04L41/147 , H04L41/16
Abstract: 本发明涉及一种基于DDPG神经网络的网络流量预测方法,构建DDPG神经网络,获取当前时间片对应的时间片集合的网络流量数据,当前时间片对应的时间片集合包括当前时间片以及当前时间片之前的预设个数的时间片,网络流量数据包括预测使用数据和真实值数据,根据当前时间片对应的时间片集合的网络流量数据,训练DDPG神经网络,最后根据训练完成的DDPG神经网络进行网络流量预测。本发明提供的基于DDPG神经网络的网络流量预测方法能够减少因实际流量较高导致的被动迁移频次,在已知减少被动迁移权重和节能权重时,最大限度提高网络整体效果,即降低被动迁移次数和能耗。
-